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Introduction

Let A = {xi}Ni=1 be a set of data in Rn. We can define a kernel function by
k : A⇥ A ! R by

k(xi , xj) = exp

✓
�kxi � xjk

✏

◆
.

If we define the matrix Kij = k(xi , xj), and the diagonal matrix

Di ,i =
NP
j=i

K (xi , xj), a result by Coifman and Lafon [1] says that the Laplacian of

the manifold approximated by the data is given by

L =
D � K

✏
.

The Laplacian describes the geometry of the data.

Examples

Lets consider a set of data on a circle. We know that the Laplace operator is

� =
d 2

d✓2
�k(✓) = c1 cos(k✓ + c2)

Where ��k = �k2�k are the eigenfunctions.

The eigenfunctions of the Laplacian are approximated well using Di↵usion Maps

Heat Equation

The heat equation in Rn is defined as the PDE ut = �u, where � is the
Laplace operator. We solve this PDE numerically using a finite di↵erence
method u(t + ⌧ ) = u(t) + ⌧�u(t). On a manifold we solve by using the
Laplacian approximation from Di↵usion Maps. Below is a heat flow on a circle.

Geometric Heat Flow

Instead of solving the heat equation on functions of the dataset, we can solve
the heat equation on the data itself by using the embedding functions of the
data. This is summarized in the following steps:
1. Data is embedded into Rn using embedding functions (f1....fn).
2. We compute � on the data and run a heat flow on the embedding functions

for a time step dt.
3. Now we have a new dataset. We recompute � and repeat the heat flow.
We expect that this kind of flow will give us a dataset with more regularity.
Moreover, the circle should be a fixed point of this flow in R2

Singularities

When running this flow for a long time, we see that perturbations due to
numerical error result in clustering of the points, and therefore a singular Kernel
matrix:

Figure: The geometric flow crashes due to instability

Resampling

In order to address this the singularity, we attempted to resample points
uniformly across the manifold with each step of the geometric flow. We
thought we could a normalization of the data to its k nearest neighbors.

1. Build the distance/kernel matrix
2. Perform normaliziation
3. Apply inverse to retrieve distance matrix from KX

4. Perform MDS to recover center version of the points.
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This process, however, distorts the geometry of the data.

Dimensionality Reduction

We can also use di↵usion maps to do a nonlinear dimensionality reduction. The
benefit of this as opposed to linear techniques is that the reduced data is
isometric to the original data. In order to do this we did a gradient descent,
where we minimized the objective function:

C̃ = argminCkKX � KX̃ (C )kfro

) )

Progressive improvements in reconstruction for m = 2
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