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Introduction
The Knapsack Problem has been prevalent in the field of
Computer Science and Mathematics for at least a century. Its
applications are plentiful as it naturally occurs in resource
allocation problems, which are numerous in finance. As such, we
are studying the knapsack problem as it applies to optimizing a
financial portfolio. Additionally, we use sensible assumptions
about our financial application in order to be able to solve and
optimize solutions in a reasonable time.

Preliminary Definitions/Concepts

Definition (Linear and Integer Programming)
Linear Programming (LP) is an optimization method
that applies to mathematical models that can be
characterized by linear relationships.

In LP, the set of possible choices can be represented as a
convex polytope due to the nature of using linear inequalities.

Solutions are always at one of the vertices of this region. If
more than one vertices yield the same maximum value, then
the set of optimal solutions is another infinite set of points.

Integer Programming (IP) seeks to solve optimization
problems in which variables are restricted to integer values.

IP and LP are often at odds as restricting solutions to
integers prevents LP from helping as seen in certain variants
of the knapsack problem which we are studying.

Definition (Knapsack Problem)
The general Knapsack Problem seeks to answer the
following:

Given a set of n elements, with each element having a
weight wi and value vi , determine what combination of the
elements give the highest value while respecting a given
constraint on the weights.

We want to maximize

f (x1, x2, ..., xn) =
n∑

i=1

vixi

while satisfying the condition

C (x1, x2, ..., xn) =
n∑

i=1

wixi ≤ W

where W is the maximum weight capacity and each xi is a
non-negative integer.

More on the Knapsack Problem

While the general knapsack problem is easy to
understand, solving and optimization is difficult. In
fact, the knapsack problem belongs to a class of
problems labeled as NP-Complete.

The classification implies, in terms of efficiency,
that there is no efficient algorithm that can solve
the problem better than brute force.

Although the general case is complex, certain
assumptions about the items allow one to solve the
problem through quicker algorithms.

If fractional amounts of items were allowed, then
LP techniques would allow us to find a quick
solution: one simply sorts the items by their value
to weight ratio, and takes as many items as possible
to fit with the given constraint.

With the 0-1 knapsack problem, we add one
additional constraint on the number of items as
given:

C (x1, x2, ..., xn) =
n∑

i=1

wixi ≤ W and xi ∈ {0, 1}

Finance Point of View

In our finance application, we look at the following
scenario: An investor is looking to buy a collection
of companies, c1 to cn, with corresponding prices, p1

to pn. For those prices, we assume the change in
price, ∆pi = pi ,k+1 − pi ,k, satisfies ∆pi which is
fixed around a neighborhood of time k. In this way,
we want to maximize

∑
i xi∆pi for which∑

i xipi ≤ B where B is the budget of the investor
and xi ∈ {0, 1}.
In our research, we looked at some simple cases in
regards to pi where it takes on a single value, two
distinct values, and three distinct values. For the
single value case, we can simply sort the items by
value and pick until we reach the budget.

For two distinct values, we sort the items based on
their weights and fix the amount of one item. From
there, we iteratively calculate how many items can
we get of the second weight and arrive at a
solution. This can be done in linear time, but this
can be done in O(nlogn) time overall as the sorting
dominates the worst-case runtime.

For three distinct weights, we do the same as two
distinct weights, but we fix the amount of items for
two distinct weight values. The calculations are
done in quadratic time, which overtakes the
previous worst-case run time. Namely, it is O(n2).
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Findings
While examining the knapsack problem, we came to ask
some questions with one being if we can get a ”zig-zag”
phenomena where a smaller value can be between two larger
values creating a ”cup”-like situation. We were able to find
examples of such situations in both the two- and three-
weight case.

As seen by the figure that shows the two-weight case, there
is a strict increase in the values, but it then results in a
jagged effect as gaps are created due to only allowing integer
solutions.

The analogous situation happens in the three weight case
where the surface looks relatively monotonic, but closer
inspection shows that there are local ”cups” where higher
values surround a lower one. This also shows the difficulty as
finding efficient solutions for IP.

Another question we ask is whether a curve of best fit will
stay close to the optimal value? This was found to not be
true as, in some cases, the curve of best-fit will completely
undershoot the optimal value.

Future Work
If we were to continue this research, one question we would
like to examine closely is whether, in the long run, can we
maximize the profit from repeated buying and selling of
companies by knowing each pi(t) =

∑t
τ=1 ∆pi(τ ) over a

long period of time?

Additionally, we would want to look into ways to quickly find
solutions for the case of four or greater distinct weights as
each weight increases the worst case by a power. This can
be possibly be done by looking more closely at the geometric
properties of the possible solutions as given by a convex
polytope.
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