
The Geometry of Self-Driving Cars
Susan Tarabulsi, Maria-Pia Younger, Dr. Anton Lukyanenko

Mason Experimental Geometry Lab

December 6, 2019

Introduction

As Self-Driving cars are becoming more popular, there is a need to
minimize the length or time in order to minimize cost. For this, we must
first understand the geometry of Self-Driving cars

Since Self-Driving cars have a turning radius, we cannot use Euclidean
distance to measure path-length. This problem resembles what Lexter Eli
Dubins described in his 1957’s research paper, On Curves of Minimal
Length with a Constraint on Average Curvature, and with Prescribed
Initial and Terminal Positions and Tangents, a paper in which Dubins
explained the possible optimal paths between two points given a curvature
constraint.
In our project we aimed to study the geometry of Dubins paths. Using
Matlab’s and The Open Motion Planning Library (OMPL)’s
DubinsStateSpace packages we were able to:

Analyze Dubin’s paths and validate Dubin’s 1957 research paper based on these
observations
Calculate lengths and observe length changes as the initial and final directions change
when having fixed initial and final position points:

f : {(t1, t2) : ti ∈ {0, πn ,
2π
n ,

2nπ
n }} → Shortest Path

Categorize Dubin’s paths, where:
f : {RxRx [0, 2π]} → S = {LRL, LSL, LSR ,RLR ,RSR ,RSL} where
{L,R , S , LS , LR ,RL,RS} ∈ S
Created a dynamic tool to see how these short paths behave given a minimum turning
radius, and final position and direction points.

Dubins Model Overview

The Dubins model is commonly used in the fields of robotics and control
theory as a way to plan paths for wheeled robots, airplanes and
underwater vehicles, and usual driving especially at high speed.

An object can directly move forward only. To let objects move backwards,
we would have to apply Reed-Shepp’s algorithm which we will not discuss
here.

It can get anywhere if there are no obstacles; otherwise, it can get stuck.

It cannot wiggle to change the angle.

The most effective way to get to the destination is to combine straight and
full-turn motions. It is proven by L.E. Dubins that his model is effective and
works in any space.

Graphics

Dubins Paths Includes CSC & CCC Trajectories Only

Dubins paths consist of CCC and CSC configuration
trajectories. The CSC trajectories include LSL, LSR, RSL,
and RSR — a turn followed by a straight line followed by
another turn (i.e., Left (L) or Right (R)). The CCC
trajectories include LRL and RLR - a turned followed by a
turn of the opposite direction. Each curve travels around the
given radius constraint circle. See below:

Categorization & Visualization of Dubins Paths

To begin studying Dubins paths we categorized each
path given a Minimum Turning Radius (MTR)
constraint. Notice that because the position space is
fixed between [(−1, 1), (−1, 1), (0, 2π)] and for this
experiment, the MTR changes between 0.25 to 1.50,
we can see slices of the Dubins space from different
ratio specs.

0.25 0.50 0.75

1.00 1.25 1.50

Dubins Length: Sampling of The (0, 0) to (0, 0) Slice

Next is an example of the visualization of Dubins lengths. For this
example we used fixed initial and final positions (x1, y1), (x2, y2) at (0, 0),
(0, 0) respectively. The coordinates of this graph represents
(θ1, θ2, length), where θ1 is the initial direction, θ2 is the ending direction,
length is the outcome of the function f defined by:

f (x1, y1, θ1, x2, y2, θ2) = fx ,y(θ1, θ2)

f:{(θ1, θ2) : θi ∈ {0, πn ,
2π
n ,

2nπ
n }} → length = Dubins Shortest Path

This graph has a natural discontinuity when θ1 = θ2. This is because the
position and direction do not change at these points, hence objects do not
need to move. Note however, when results do not lie in the π

4 or 45 degree
line, all points are continuous. Notice that both, ”upper” and ”lower”,
regions in reference to the 45 degree line are continuous but may not
necessarily be differentiable.

Dubins Length Graph of The (0, 0) to (0, 0) Universe

Code Behind Dubins Algorithms

Below is a brief description of the algorithms derived from Dubins
observations. We used Matlab’s DubinsStateSpace package to retrieve path
data for each (x1, y1, θ1) to (x2, y2, θ2), looped through a given space,
categorized path types with the Path Algorithm; created images, videos, and
other tools for analysis purposes. The Arc Length Algorithm was retrieved
from other documentation sources. The length computation is a built-in
function under the DubinsStateSpace package.
Path Algorithm Arc Length Algorithm

Let d = ””
For i = 2 to Rows From Interpolated Data
θi = atan2(yi − yi−1, xi − xi−1) θ = atan2(yi − yi−1, xi − xi−1)
If θi−1 − θi = 0 Then If θ =< 0 And d =”left” Then
d = ”straight” θ = θ + 2π

Else If thetai > thetai−1 Then else If θ > 0 And d =”right” then
d = ”right” θ = θ − 2π

Else End If
d = ”left” Return (θ ∗ r)

End If
If (θi − θi−1 > π)
If d = ”right” Then
d = ”left”

Else If d = ”left” Then
d = ”right”

End If
End If

d = d + d
End For

Return d

Conclusion & Suggested Ongoing Work

We concluded that Dubins space is discontinuous. This was expected because
Dubins space is asymmetrical. We also concluded that Dubins paper is correct
based on experimental observations. As future work, it is suggested to analyze
the Dubins slices (e.g., the (0, 0, θ1) to (0, 0, θ2) slice), also to analyze the 3D
blocks and improve any tools created to understand Dubins space better.

Acknowledgments

We thank the Mason Experimental Geometry Lab founding director and
co-director, Dr. Sean Lawton and Dr. Anton Lukyanenko, for the opportunity
to conduct undergraduate mathematics research. A special thanks to Dr.
Anton Lukyanenko - once again - for his guidance with this project, and the
MEGL team for making this a great experience. Special thanks to Bram
Bekker, Julian Benali, Savannah Crawford, and Dr. Jack Love.

References

1 Dubins, L. E. (1957). On Curves of Minimal Length with a Constraint on Average Curvature, and with Prescribed Initial
and Terminal Positions and Tangents. American Journal of Mathematics, 79(3), 497. doi: 10.2307/2372560

2 Gieseanw, A. (2013, July 4). A Comprehensive, Step-by-Step Tutorial to Computing Dubin’s Paths. Retrieved from
https://gieseanw.wordpress.com/2012/10/21/a-comprehensive-step-by-step-tutorial-to-computing-dubins-paths/.

3 S, ucan, I. A., Moll, M., Kavraki, L. E. (n.d.). The Open Motion Planning Library. Retrieved from
https://ompl.kavrakilab.org/.

4 stateSpaceDubins. (n.d.). Retrieved from https://www.mathworks.com/help/nav/ref/statespacedubins.html.

5 Reeds, J., Shepp, L. (1990). Optimal paths for a car that goes both forwards and backwards. Pacific Journal of
Mathematics, 145(2), 367–393. doi: 10.2140/pjm.1990.145.367


