・ 同 ト ・ ヨ ト ・ ヨ ト

Becoming a Fan of the Gröbner Fan: Combinatorial Algebra of a Modulized Basis

Shams Alyusof & Anneliese Slaton MEGL

May 6th, 2016

Goals

Goal

To develop tools to understand a compactification of the variety $\chi(\textit{F}_3,\textit{SL}_2)$

We refer to this compactification as $M \subseteq \mathbb{P}^7$ where \mathbb{P} is projective space

э.

Background	Work
0	000
00000000	Ō
	0
	000000
	00
Definitions	
Definitions	

Definitions:

- ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ◆ ○ ◆ ○ ◆ ○ ◆

Background ○ ●00000000	Wark 000 0 0000000 0000000
Definitions	

Definitions:

Polytope:

Finite intersection of halfspaces in some \mathbb{R}^d that is bounded, meaning it does not contain a ray $\{\mathbf{x} + t\mathbf{y} : t \ge 0\}$ for any $\mathbf{y} \neq \mathbf{0} \rightarrow \text{H-Polytope}$

・ 「 ト ・ ヨ ト ・ ヨ ト

Background ○ ●00000000	Work 000 0 0 000000
	000000
Definitions	

Definitions:

Polytope:

Finite intersection of halfspaces in some \mathbb{R}^d that is bounded, meaning it does not contain a ray $\{\mathbf{x} + t\mathbf{y} : t \ge 0\}$ for any $\mathbf{y} \neq \mathbf{0} \rightarrow \text{H-Polytope}$

equivalently

Convex hull of a finite set of points in some $\mathbb{R}^d o V$ -Polytope

・ 同 ト ・ ヨ ト ・ ヨ ト …

= nar

(日)

Polytope Face:

A *face* of a polytope $P \in \mathbb{R}^n$ is defined

$$F_{w} = \{\mathbf{u} \in P : \mathbf{w} \cdot \mathbf{u} \ge \mathbf{w} \cdot \mathbf{v} \forall \mathbf{v} \in P\}$$

where $\mathbf{w} \in \mathbb{R}^n$ is called a *normal vector* to the face F_w where \mathbf{w} is not necessarily unique

= nac

<ロ> <同> <同> <同> < 三> < 三> <

Polytope Face:

A face of a polytope $P \in \mathbb{R}^n$ is defined

$$F_{w} = \{\mathbf{u} \in P : \mathbf{w} \cdot \mathbf{u} \ge \mathbf{w} \cdot \mathbf{v} \forall \mathbf{v} \in P\}$$

where $\mathbf{w} \in \mathbb{R}^n$ is called a *normal vector* to the face F_w where \mathbf{w} is not necessarily unique

Dimension of P: dim(P) = # of w_i for face F + dim(F)

Background	
0	
0000000000	

Definitions

Let f be a polynomial
$$f = \sum_{i=1}^{n} c_i X^{a_i}$$
 in $K[x_1, \ldots x_n]$.

Background ○ ○○●○○○○○○○	Work 000 0 0 0000000 000000
Definitions	00

Let *f* be a polynomial $f = \sum_{i=1}^{n} c_i X^{a_i}$ in $K[x_1, \ldots x_n]$. Newton Polytope: $New(f) = conv\{a_i, i = 1, \ldots, n\}.$

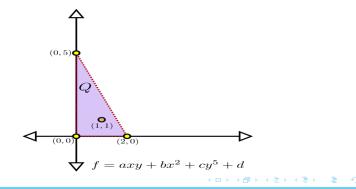
- • □ • • @ • • 差 • • 差 • 差 • のへで

ackground	Work 000
0000000	000
	000000

Definitions

Ba

Let f be a polynomial $f = \sum_{i=1}^{n} c_i X^{a_i}$ in $K[x_1, \dots, x_n]$. Newton Polytope: $New(f) = conv\{a_i, i = 1, \dots, n\}$. Ex:



Background O OOO®OOOOOO	Work 000 0 000000
Definitions	

► Initial Ideal:

Fix
$$w = (w_1, \ldots, w_n) \in \mathbb{Q}^n$$
.

- ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ ○ ◆ ○ ◆ ○ ◆ ○ ◆

Background O OOO®000000	Work 000 0 0 000000 000000
Definitions	

Initial Ideal:

Fix $w = (w_1, \dots, w_n) \in \mathbb{Q}^n$. We define the *initial form* $in_w(f)$ to be the sum all term $c_i X^{a_i}$ such that the inner product $w \cdot a_i$ is maximal.

・ロ > ・(型 > ・(ヨ > ・(ヨ > ・)

Background	Work
0	000
00000000	
Definitions	

Initial Ideal:

Fix $w = (w_1, \ldots, w_n) \in \mathbb{Q}^n$. We define the *initial form* $in_w(f)$ to be the sum all term $c_i X^{a_i}$ such that the inner product $w \cdot a_i$ is maximal. For an ideal I we defined the *initial ideal* to be the ideal generated by all initial forms

$$< in_w(f): f \in I > .$$

= 900

Background ○ ○○○●○○○○○○	Work 000 0 000000
	000000
Definitions	

Initial Ideal:

Fix $w = (w_1, \ldots, w_n) \in \mathbb{Q}^n$. We define the *initial form* $in_w(f)$ to be the sum all term $c_i X^{a_i}$ such that the inner product $w \cdot a_i$ is maximal. For an ideal I we defined the *initial ideal* to be the ideal generated by all initial forms

$$< in_w(f): f \in I > .$$

► If we have a principal polynomial ideal (ideal generated by one polynomial *I* =< *f* >), then

$$in_w(I) = \langle in_w(f) \rangle$$
.

▲口 ▶ ▲冊 ▶ ▲ 三 ▶ ▲ 三 ● ● ● ● ●

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Definitions

Ex:

$$w = (1, 1, 0)$$

$$f(x, y, z) = xy + xz + x^2$$

$$in_w(f) = xy + x^2$$

Background ○ ○○○○○●○○○○	Work 000 0 0 000000 0 000000
Definitions	

Cone: A cone C is a polyhedron in ℝⁿ such that for all u, v ∈ C, a ∈ ℝ⁺, 1. u + v ∈ C 2. au ∈ C

(日)

Background o ooooo	Wark 000 0 0 000000 000000
Definitions	

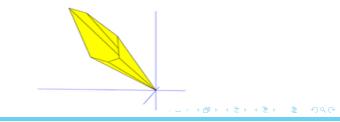
Cone:

```
A cone C is a polyhedron in \mathbb{R}^n such that for all u, v \in C, a \in \mathbb{R}^+,
```

1. $u + v \in C$

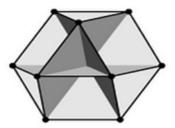
Polyhedral Cone:

A cone with finitely many generators $\{u_1, \ldots u_k\} \subset C$ i.e. $C = \{\lambda_1 u_1 + \ldots + \lambda_k u_k : \lambda_i \geq 0\}.$



Polyhedral Fan:

Finite collection of polyhedral cones such that the intersection of any finite number of cones is a cone in the fan.



(日)

Background ○ ○○○○○○○●○○	Work 000 0 000000 000000
Definitions	

Normal Cone:

The normal cone of a face F of a polytope P is defined

$$N_P(F) = \{\mathbf{w} \in \mathbb{R}^n : F_w = F\}$$

<ロ> <同> <同> <目> <日> <同> < □> < □> <

Background ○ ○ ○	Work 000 0 0 000000 000000
Definitions	

Normal Cone:

The normal cone of a face F of a polytope P is defined

$$N_P(F) = {\mathbf{w} \in \mathbb{R}^n : F_w = F}$$

Normal Fan: The normal fan N(P) of a polytope P is the collection of all normal cones N_P(F) where F ranges over the faces of P

<日本

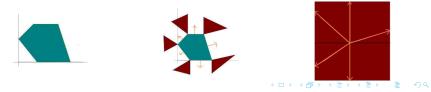
Background ○ ○○○○○○○●○○	Work 000 0 0 000000 000000
D. Guldens	

Normal Cone:

The normal cone of a face F of a polytope P is defined

$$N_P(F) = {\mathbf{w} \in \mathbb{R}^n : F_w = F}$$

Normal Fan: The normal fan N(P) of a polytope P is the collection of all normal cones N_P(F) where F ranges over the faces of P



Background o coococoo	Work 000 0 0 000000 000000
Definitions	

Gröbner Fan:

For an ideal I in K[X] we define the *Gröbner fan* GF(I) to be the set of closed cones C[w] where

 $C[w] = \{w' \in K^n : in_{w'}(f) = in_w(f) \forall f \in \text{Gröbner basis}\}.$

・ロ > ・ 同 > ・ 三 > ・ 三 > ・

Background ○ ○○○○○○○○●○	Work 000 0 0 000000 000000
Definitions	

Gröbner Fan:

For an ideal I in K[X] we define the *Gröbner fan* GF(I) to be the set of closed cones C[w] where

$$C[w] = \{w' \in K^n : in_{w'}(f) = in_w(f) \forall f \in \text{Gröbner basis}\}.$$

- 4 同 2 4 日 2 4 日 2 4

We will see shortly that the Gröbner fan is useful in our research

Background ○ ○○○○○○○○○●	Wark 000 0 000000 000000
Definitions	

Fact 1:

Let *I* be a homogeneous ideal in K[X]. There exists a polytope $State(I) \subset K^n$ whose normal fan coincides with the Gröbner fan GF(I).

(日) (同) (三) (三)

Background ○ ○ ○ ○ ○ ○ ○ ○ ○	Work 000 0 000000 000000
Definitions	

Fact 1:

Let *I* be a homogeneous ideal in K[X]. There exists a polytope $State(I) \subset K^n$ whose normal fan coincides with the Gröbner fan GF(I). **Fact 2:** Let *I* be a principle homogeneous ideal $I = \langle f \rangle \in K[X]$, then State(I) = New(f).

・ロ > ・ (同 > ・ (三 > ・ (三 > ・

Fact 1:

Let I be a homogeneous ideal in K[X]. There exists a polytope $State(I) \subset K^n$ whose normal fan coincides with the Gröbner fan GF(I).

Fact 2:

Let I be a principle homogeneous ideal $I = \langle f \rangle \in K[X]$, then State(I) = New(f).

Fact 3:

The edges of the state polytope of an ideal I are in a natural bijection with the distinct binomial initial ideals $in_{w}(I)$.

Polynomial from "Compactifications of Character Varieties and Skein Relations on Conformal Blocks" by Christoper Manon:

 $x_{111}x_{100}x_{010}x_{001} - x_{110}x_{101}x_{011}x_{000}$

 $\begin{aligned} + x_{110}^2 x_{000}^2 + x_{101}^2 x_{000}^2 + x_{011}^2 x_{000}^2 \\ + x_{100}^2 x_{000}^2 + x_{010}^2 x_{000}^2 + x_{001}^2 x_{000}^2 + x_{111}^2 x_{000}^2 - 4 x_{000}^4 \end{aligned}$

 $+ x_{111} x_{100} x_{011} x_{000} + x_{111} x_{010} x_{101} x_{000} + x_{111} x_{001} x_{110} x_{000}$

 $+x_{100}x_{010}x_{110}x_{000} + x_{100}x_{001}x_{101}x_{000} + x_{010}x_{001}x_{011}x_{000} = 0$

・ロ > ・ (同 > ・ (三 > ・ (三 > ・

Background O OOOOOOOOOO	Work 000 0 0 000000 000000
The Polynomial	

Subscript of polynomial variables indicate edge weight

(a)

Work

ъ.

Subscript of polynomial variables indicate edge weight

subscript with one 1 has edge weight 3

(日)

- Subscript of polynomial variables indicate edge weight
 - subscript with one 1 has edge weight 3
 - subscript with two 1s has weight 4

< ロ > < 同 > < 三 > < 三 > 、

э.

- Subscript of polynomial variables indicate edge weight
 - subscript with one 1 has edge weight 3
 - subscript with two 1s has weight 4
 - subscript with three 1s has weight 3

・ロト ・同ト ・ヨト ・ヨト

- Subscript of polynomial variables indicate edge weight
 - subscript with one 1 has edge weight 3
 - subscript with two 1s has weight 4
 - subscript with three 1s has weight 3
 - subscript with three 0s has weight 0

<日本

- Subscript of polynomial variables indicate edge weight
 - subscript with one 1 has edge weight 3
 - subscript with two 1s has weight 4
 - subscript with three 1s has weight 3
 - subscript with three 0s has weight 0
- Polynomial gives neat hypersurface
- Solution set to this polynomial gives variety

Using trivalent graphs and these edge weights, Dr. Manon has conjectured that

 $x_{111}x_{100}x_{010}x_{001} - x_{110}x_{101}x_{011}x_{000}$

< ロ > < 同 > < 三 > < 三 > 、

э.

is an irreducible edge of the polytope.

Using trivalent graphs and these edge weights, Dr. Manon has conjectured that

 $x_{111}x_{100}x_{010}x_{001} - x_{110}x_{101}x_{011}x_{000}$

- 4 同 6 4 日 6 4 日 6

is an irreducible edge of the polytope.

We hope to prove this

Utilized Gfan software to find Gröbner fan of this polynomial

(日) (同) (三) (三)

Utilized Gfan software to find Gröbner fan of this polynomial

Gröbner fan has ambient space dimension 8 and has 17 rays

・ロ > ・ 同 > ・ 三 > ・ 三 > ・

Utilized Gfan software to find Gröbner fan of this polynomial

- Gröbner fan has ambient space dimension 8 and has 17 rays
- f vector: (1, 17, 106, 304, 434, 311, 106, 16)

・ロ > ・ 同 > ・ 三 > ・ 三 > ・

- Gröbner fan has ambient space dimension 8 and has 17 rays
- f vector: (1, 17, 106, 304, 434, 311, 106, 16)
 - Associated polytope has:

(日)

- Gröbner fan has ambient space dimension 8 and has 17 rays
- f vector: (1, 17, 106, 304, 434, 311, 106, 16)
 - Associated polytope has: 16 vertices

(日)

- Gröbner fan has ambient space dimension 8 and has 17 rays
- f vector: (1, 17, 106, 304, 434, 311, 106, 16)
 - Associated polytope has: 16 vertices 106 edges

・ロ > ・ (同 > ・ (三 > ・ (三 > ・

- Gröbner fan has ambient space dimension 8 and has 17 rays
- f vector: (1, 17, 106, 304, 434, 311, 106, 16)
 - Associated polytope has: 16 vertices
 106 edges
 311 dimension 2 faces

- Gröbner fan has ambient space dimension 8 and has 17 rays
- ▶ f vector: (1, 17, 106, 304, 434, 311, 106, 16)
 - Associated polytope has: 16 vertices
 106 edges
 311 dimension 2 faces
 434 dimension 3 faces

- Gröbner fan has ambient space dimension 8 and has 17 rays
- f vector: (1, 17, 106, 304, 434, 311, 106, 16)
 - Associated polytope has: 16 vertices
 106 edges
 311 dimension 2 faces
 434 dimension 3 faces
 304 dimension 4 faces

(日本)

- Gröbner fan has ambient space dimension 8 and has 17 rays
- f vector: (1, 17, 106, 304, 434, 311, 106, 16)
 - Associated polytope has: 16 vertices
 106 edges
 311 dimension 2 faces
 434 dimension 3 faces
 304 dimension 4 faces
 106 dimension 5 faces

(日本)

- Gröbner fan has ambient space dimension 8 and has 17 rays
- ▶ f vector: (1, 17, 106, 304, 434, 311, 106, 16)
 - Associated polytope has: 16 vertices
 106 edges
 311 dimension 2 faces
 434 dimension 3 faces
 304 dimension 4 faces
 106 dimension 5 faces
 17 dimension 6 faces

(日本)

- Gröbner fan has ambient space dimension 8 and has 17 rays
- ▶ f vector: (1, 17, 106, 304, 434, 311, 106, 16)
 - Associated polytope has: 16 vertices
 106 edges
 311 dimension 2 faces
 434 dimension 3 faces
 304 dimension 4 faces
 106 dimension 5 faces
 17 dimension 6 faces
 1 dimension 7 faces

Background o oocoocoocoo	Work ○○○ ● ○○○○○○ ○○
Finding Irreducible Binomials	

We found irreducible binomials:

Finding Irreducible Binomials

We found irreducible binomials:

 $x_{111}x_{100}x_{010}x_{001} - x_{110}x_{101}x_{011}x_{000}$

◆ロ → ◆母 → ◆ 臣 → ◆ 臣 → 今 Q @

Finding Irreducible Binomials

We found irreducible binomials:

 $x_{111}x_{100}x_{010}x_{001} - x_{110}x_{101}x_{011}x_{000}$

 $x_{111}x_{100}x_{010}x_{001} + x_{110}^2x_{000}^2$

Finding Irreducible Binomials

We found irreducible binomials:

 $x_{111}x_{100}x_{010}x_{001} - x_{110}x_{101}x_{011}x_{000}$

 $x_{111}x_{100}x_{010}x_{001} + x_{110}^2x_{000}^2$

 $x_{111}x_{100}x_{010}x_{001} + x_{101}^2x_{000}^2$

Finding Irreducible Binomials

We found irreducible binomials:

×111×100×010×001 — ×110×101×011×000

 $x_{111}x_{100}x_{010}x_{001} + x_{110}^2x_{000}^2$

 $x_{111}x_{100}x_{010}x_{001} + x_{101}^2x_{000}^2$

 $x_{111}x_{100}x_{010}x_{001} + x_{011}^2x_{000}^2$

Finding Irreducible Binomials

We found irreducible binomials:

 $x_{111}x_{100}x_{010}x_{001} - x_{110}x_{101}x_{011}x_{000}$ $x_{111}x_{100}x_{010}x_{001} + x_{110}^2x_{000}^2$ $x_{111}x_{100}x_{010}x_{001} + x_{101}^2x_{000}^2$ $x_{111}x_{100}x_{010}x_{001} + x_{011}^2x_{000}^2$ $x_{111}x_{100}x_{010}x_{001} - 4w_{000}^4$

Finding Irreducible Binomials

We found irreducible binomials:

 $\begin{aligned} x_{111}x_{100}x_{010}x_{001} - x_{110}x_{101}x_{011}x_{000} \\ x_{111}x_{100}x_{010}x_{001} + x_{110}^2x_{000}^2 \\ x_{111}x_{100}x_{010}x_{001} + x_{101}^2x_{000}^2 \end{aligned}$

 $x_{111}x_{100}x_{010}x_{001} + x_{011}^2x_{000}^2$

 $x_{111}x_{100}x_{010}x_{001} - 4w_{000}^4$

Which of these are edges of the polytope?

Background 0 000000000	Work ○○○ ○ ●○○○○○
W and Its Initial Form	

Algorithm for finding polytope edges developed by Dr. Manon:

Background o ooooooooo	Work ○○○ ○ ●○○○○○ ○○
W and Its Initial Form	

Algorithm for finding polytope edges developed by Dr. Manon:

1. Using dim 7 cones, sum corresponding extremal rays $\rightarrow W$

・ロト ・同ト ・ヨト ・ヨト

(日) (同) (三) (三)

э.

Algorithm for finding polytope edges developed by Dr. Manon:

- 1. Using dim 7 cones, sum corresponding extremal rays ightarrow W
- 2. Compute initial form of W

・ロ > ・ (同 > ・ (三 > ・ (三 > ・

Algorithm for finding polytope edges developed by Dr. Manon:

- 1. Using dim 7 cones, sum corresponding extremal rays $\rightarrow W$
- 2. Compute initial form of W
 - 2.1 Find monomials whose exponent vectors are weighted highest by \boldsymbol{W}

・ロ > ・ (同 > ・ (三 > ・ (三 > ・

Algorithm for finding polytope edges developed by Dr. Manon:

- 1. Using dim 7 cones, sum corresponding extremal rays $\rightarrow W$
- 2. Compute initial form of W
 - 2.1 Find monomials whose exponent vectors are weighted highest by \boldsymbol{W}
- 3. This is edge check against irreducible binomials

```
fullwvec1 = []
for vec1 in dim7cones:
    wvec1 = [0, 0, 0, 0, 0, 0, 0, 0]
    for num1 in vec1:
        rel_vec1 = rays[num1]
        wvec1 = [h + k for h, k in zip(wvec1, rel_vec1)]
    fullwvec1.append(wvec1)
```

```
fullwvec1 = []
for vec1 in dim7cones:
    wvec1 = [0, 0, 0, 0, 0, 0, 0, 0]
    for num1 in vec1:
        rel_vec1 = rays[num1]
        wvec1 = [h + k for h, k in zip(wvec1, rel_vec1)]
    fullwvec1.append(wvec1)
```

```
Ex: dim 7 cone = (0, 1, 2, 3, 4, 5, 6)
```

```
fullwvec1 = []
for vec1 in dim7cones:
    wvec1 = [0, 0, 0, 0, 0, 0, 0, 0]
    for num1 in vec1:
        rel_vec1 = rays[num1]
        wvec1 = [h + k for h, k in zip(wvec1, rel_vec1)]
    fullwvec1.append(wvec1)
```

```
Ex: dim 7 cone = (0, 1, 2, 3, 4, 5, 6)
Add rays 0 + 1 + 2 + 3 + 4 + 5 + 6 \rightarrow [-13, -7, 3, 3, -3, 7, 5, 5]
```

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

W and Its Initial Form

```
list = []
for vec2 in fullwvec1:
   listv2 = []
   a1 = vec2[0] + vec2[1] + vec2[2] + vec2[4]
   a^2 = vec^2[5] + vec^2[6] + vec^2[7] + vec^2[3]
   a3 = vec2[5]*2 + vec2[3]*2
   a4 = vec2[6]*2 + vec2[3]*2
   a5 = vec2[7]*2 + vec2[3]*2
   a6 = vec2[1]*2 + vec2[3]*2
   a7 = vec2[2]*2 + vec2[3]*2
   a8 = vec2[4]*2 + vec2[3]*2
   a9 = vec2[0]*2 + vec2[3]*2
   a10 = vec2[3]*4
   a11 = vec2[0] + vec2[1] + vec2[7] + vec2[3]
   a12 = vec2[0] + vec2[2] + vec2[6] + vec2[3]
   a13 = vec2[0] + vec2[4] + vec2[5] + vec2[3]
   a14 = vec2[1] + vec2[2] + vec2[5] + vec2[3]
   a15 = vec2[0] + vec2[4] + vec2[6] + vec2[3]
   a16 = vec2[2] + vec2[4] + vec2[7] + vec2[3]
   listv2 = [a1, a2, a3, a4, a5, a6, a7, a8, a9,
   list.append(listv2)
```

W and Its Initial Form

list = []for vec2 in fullwvec1: listv2 = []a1 = vec2[0] + vec2[1] + vec2[2] + vec2[4]a2 = vec2[5] + vec2[6] + vec2[7] + vec2[3]a3 = vec2[5]*2 + vec2[3]*2a4 = vec2[6]*2 + vec2[3]*2a5 = vec2[7]*2 + vec2[3]*2 a6 = vec2[1]*2 + vec2[3]*2 a7 = vec2[2]*2 + vec2[3]*2 a8 = vec2[4]*2 + vec2[3]*2 a9 = vec2[0]*2 + vec2[3]*2a10 = vec2[3]*4a11 = vec2[0] + vec2[1] + vec2[7] + vec2[3]a12 = vec2[0] + vec2[2] + vec2[6] + vec2[3]a13 = vec2[0] + vec2[4] + vec2[5] + vec2[3]a14 = vec2[1] + vec2[2] + vec2[5] + vec2[3]a15 = vec2[0] + vec2[4] + vec2[6] + vec2[3]a16 = vec2[2] + vec2[4] + vec2[7] + vec2[3]listv2 = [a1, a2, a3, a4, a5, a6, a7, a8, a9, list.append(listv2)

Take the monomials in f whose exponent vectors are weighted highest by W Ex: -13(1) - 7(1) + 3(1) + 3(0) - 3(1) + 7(0) + 5(0) + 5(0) = -20

Background	
0	
0000000000	

W and Its Initial Form

```
indlist = []
func = [" + xyza", " - bcdw", " + b^2w^2", " + c^2w'
for vec in list:
    m = max(vec)
    ind = [i for i, j in enumerate(vec) if j == m]
    indlist.append(ind)
print indlist
for vec2 in indlist:
    ans = " "
    if len(vec2) == 2:
        for numl in vec2:
            a = func[num]
            ans = ans + a
        print(ans)
```

Add the monomials these map to

Background oocoocoocoo	Work ○○○ ○ ○○○●○○
W and Its Initial Form	

```
indlist = []
func = [" + xyza", " - bcdw", " + b^2w^2", " + c^2w'
for vec in list:
    m = max(vec)
    ind = [i for i, j in enumerate(vec) if j == m]
    indlist.append(ind)
print indlist:
for vec2 in indlist:
    ans = " "
    if len(vec2) == 2:
        for num in vec2:
            a = func[num]
            ans = ans + a
    print(ans)
```

Add the monomials these map to If one of the irreducible binomials is this polynomial, it's an edge

Background
0
0000000000

W and Its Initial Form

Results	
$x_{110}^2 x_{000}^2 - 4 x_{000}^4$	(1)
$x_{100}^2 x_{000}^2 - 4 x_{000}^4$	(2)
$-x_{110}x_{101}x_{011}x_{000} + x_{011}^2x_{000}^2$	(3)
$x_{101}^2 x_{000}^2 + x_{011}^2 x_{000}^2$	(4)
$x_{110}^2 x_{000}^2 + x_{011}^2 x_{000}^2$	(5)
$x_{111}x_{100}x_{010}x_{001} + x_{010}x_{001}x_{011}x_{000}$	(6)
$x_{011}^2 x_{000}^2 - 4 x_{000}^4$	(7)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Background 0 0000000000

W and Its Initial Form

Results

$x_{010}^2 x_{000}^2 - 4x_{00}^4$	0 (8	8)

$$x_{101}^2 x_{000}^2 - 4x_{000}^4 \tag{9}$$

$$-x_{110}x_{101}x_{011}x_{000} + x_{110}^2x_{000}^2$$
 (10)

$$-x_{110}x_{101}x_{011}x_{000} + x_{101}^2x_{000}^2 \tag{11}$$

$$x_{101}^2 x_{000}^2 + x_{100}^2 x_{000}^2 \tag{12}$$

$$x_{001}^2 x_{000}^2 - 4x_{000}^4 \tag{13}$$

<ロ> <同> <同> < 回> < 回>

$$x_{110}^2 x_{000}^2 + x_{101}^2 x_{000}^2 \tag{14}$$

$$x_{111}x_{100}x_{010}x_{001} + x_{111}x_{010}x_{101}x_{000}$$
(15)

$$x_{111}x_{100}x_{010}x_{001} + x_{100}^2x_{000}^2$$
 (16)

W and Its Initial Form

∃ 900

Results

$$x_{111}^2 x_{000}^2 - 4 x_{000}^4 \tag{17}$$

$$x_{011}^2 x_{000}^2 + x_{111}^2 x_{000}^2 \tag{18}$$

$$x_{110}^2 x_{000}^2 + x_{111} x_{001} x_{110} x_{000}$$
⁽¹⁹⁾

$$x_{111}^2 x_{000}^2 + x_{111} x_{001} x_{110} x_{000}$$
 (20)

$$x_{101}^2 x_{000}^2 + x_{010}^2 x_{000}^2 \tag{21}$$

$$x_{010}^2 x_{000}^2 + x_{010} x_{001} x_{011} x_{000}$$
 (22)

W and Its Initial Form

Results

$$x_{111}^2 x_{000}^2 - 4 x_{000}^4 \tag{17}$$

$$x_{011}^2 x_{000}^2 + x_{111}^2 x_{000}^2 \tag{18}$$

$$x_{110}^2 x_{000}^2 + x_{111} x_{001} x_{110} x_{000}$$
⁽¹⁹⁾

$$x_{111}^2 x_{000}^2 + x_{111} x_{001} x_{110} x_{000}$$
 (20)

$$x_{101}^2 x_{000}^2 + x_{010}^2 x_{000}^2 \tag{21}$$

$$x_{010}^2 x_{000}^2 + x_{010} x_{001} x_{011} x_{000}$$
 (22)

Code currently shows that none of the irreducible binomials are edges We're working on that

≡ nar

Irreducible Binomial Edges and Their Implications

There exists a weighting that gives us the initial ideal (4, 4, 4, 3, 3, 3, 3, 0) that gives

 $x_{111}x_{100}x_{010}x_{001} - x_{110}x_{101}x_{011}x_{000}$

◆□ > ◆□ > ◆豆 > ◆豆 > ◆□ > ◆○ >

Irreducible Binomial Edges and Their Implications

There exists a weighting that gives us the initial ideal (4, 4, 4, 3, 3, 3, 3, 0) that gives

 $x_{111}x_{100}x_{010}x_{001} - x_{110}x_{101}x_{011}x_{000}$

◆□ > ◆□ > ◆豆 > ◆豆 > ◆□ > ◆○ >

Irreducible Binomial Edges and Their Implications

There exists a weighting that gives us the initial ideal (4, 4, 4, 3, 3, 3, 3, 0) that gives

 $x_{111}x_{100}x_{010}x_{001} - x_{110}x_{101}x_{011}x_{000}$

- Then the modulized space *M* (a compactification of *χ*(*F*₃, *SL*₂)) has a Newton Okounkov Body
 - A convex body in Euclidean space associated to a divisor on a variety
 - A far generalization of the Newton polytope of a projective toric variety

(日)

Irreducible Binomial Edges and Their Implications

Acknowledgements

Dr. Chris Manon Dr. Sean Lawton MEGL National Science Foundation