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Abstract. A proper embedding of a graph G in a pseudosurface P is an

embedding in which the regions of the complement of G in P are homeomorphic

to discs and pinchpoints of P correspond to vertices in G; we say that a proper
embedding of G in P is self dual if there exists an isomorphism from G to its

topological dual. We show that each graph that has a possibility of being

self-dual embeddable in a pseudosurface must have at least thirteen edges,
and we establish other criteria that such a graph must satisfy. We show that

there are five possible graphs that meet these criteria. Using the definition of

an algebraic dual graph given by Abrams and Slilaty, we determine by way
of computer-powered methods that exactly two of these five graphs are self-

dual embeddable in the pinched sphere (the quotient of the sphere modulo the
identification of two distinct points). We also utilize a surgery of Edmonds to

produce self-dual embeddings of these graphs in the projective plane. We also

determine that exactly one of the five graphs has a self-dual embedding in the
projective plane and not in the pinched sphere.

1. Introduction

To us, a graph is a finite and connected multigraph, allowing for loops and parallel
edges, and a surface is a compact and connected 2-manifold without boundary; we
will let G denote a graph and S denote a surface. A cellular embedding of G in S
is an embedding for which the complement of G is a set of regions (called faces),
each of which is homeomorphic to a disc. We will let G → S denote a cellular
embedding of G in S. Following [3], given G→ S, we define the dual graph G∗ and
dual embedding (G → S)∗ as follows: the “centers” of the faces of G → S are the
vertices of G∗, and each edge e of G corresponds bijectively to an edge e∗ of G∗

connecting the vertice(s) of G∗ corresponding to the face(s) on either side of e; if
the same face bounds both sides of e, then e corresponds to a loop of G∗.

We say that two embeddings of G in surfaces S and T , denoted i : G → S and
j : G→ T , are equivalent if there is a homeomorphism f : S → T such that f ◦i = j.
Per [8, §1.4.8] ((G→ S)∗)∗ and G→ S are equivalent embeddings. An embedding
G→ S is self dual if G→ S is equivalent to (G→ S)∗. An immediate consequence
of the definition of a cellular embedding being self dual is that the dual graph is
isomorphic to the embedded graph. Figure 1 contains an example of a self-dual
embedding of a graph in a surface.

While there is a lot of research on self-dual embeddability of graphs in surfaces
([4] contains several references), questions on the self-dual embeddability of graphs
in pseudosurfaces (which are quotient spaces of surfaces via a finite number of point
identifications) have only recently been explored. The second and third authors in
[10] proved that every graph of the form K4m,4n is self-dually embeddable in a
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Figure 1. The self-dual embedding of the complete graph K5 in
the torus. The dual graph is drawn with dashed edges joining
white vertices.

Figure 2. Examples of a nonsimple dual graph resulting from an
embedded graph containing vertices of degree one or two. The dual
graph is drawn with dashed edges joining white vertices.

pseudosurface, and most of them are embeddable in several different orientable and
nonorientable pseudosurfaces. The purpose of this article is to answer the question
of the smallest self-dual embeddable simple graph in a pseudosurface. The notion
of smallness that we focus on is the size of the vertex and edge sets of a graph, not
graph minors.

First, we explore the question of the smallest self-dual embeddable simple graph
in a surface, which is an easy one. As Figure 2 evidences, if a graph has a vertex of
degree one or degree two, the dual graph will not be a simple graph. It follows that
a simple graph must have all vertices of minimum degree three to be self-dually
embedded in a surface. Clearly, the smallest (in terms of vertices and edges, not
graph minors) such graph is K4. Since K4 is 3-connected, [6, Theorem 4.3.2] implies
that there is only one way to embed K4 in the sphere (up to equivalence), which is
easily seen to be self-dual.

Following [3] a closed, connected pseudosurface is a connected topological space
obtained from a disjoint union of surfaces via a finite number of point identifications,
called pinches; the identified points are called pinchpoints. A surface is therefore
a special case of a pseudosurface. A small-enough neighborhood of a pinchpoint
is homeomorphic to the union of discs identified at a point; each identified disc
is called an umbrella of the pinchpoint. A proper embedding of a graph G in a
pseudosurface P is an embedding in which each of the regions of the complement
of G in P is homeomorphic to a disc and pinchpoints in P correspond to vertices in
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G→ P (G→ P )∗

Figure 3. An example of a self-dual embedding of a graph in the
pinched sphere, and the corresponding dual embedding.

G. It is immediate that a proper embedding of G in P is a cellular embedding. We
shall let G→ P denote a proper embedding of G in P . The definitions of the dual
graph and the dual embedding of G → P are immediate natural extensions of the
definition of the dual graph and dual embedding of G→ S, respectively: (G→ P )∗

captures the incidence of faces and edges of G in P . However, as evidenced by
Figure 3, ((G → P )∗)∗ is not necessarily well defined since (G → P )∗ is not a
proper embedding. Moreover, G → P cannot be equivalent to G → P since there
is no homeomorphism that maps a pinchpoint vertex to a non-pinchpoint vertex.
We therefore give a weaker notion, first put forward in [10], of graph self-duality
for pseudosurfaces. We say that G→ P is self dual if G∗ is isomorphic to G, which
still requires that the cellular decomposition of G → P has the property that the
incidence of faces and edges of G→ P is isomorphic to the incidence of edges and
vertices of G.

In short, for a specific graph G to be self-dual embeddable in a specific pseu-
dosurface P , there must be a permutation φ of the edges of G satisfying specific
conditions: the edges incident to each vertex of G must be mapped by φ to edges
inducing a connected subgraph H to which we may glue a disc (edges of G corre-
sponding to loops of H are used twice by the same facial boundary walk, as in Figure
2) and the choices of how to glue these discs must lead to a 2-complex homeomor-
phic to the desired P ; the 0-cells are the vertices of G, the 1-cells are the edges of G,
and the 2-cells are the faces of G→ P . This manner of using duals to approach the
question of embeddability has been explored by Abrams and Slilaty in [2] and [3],
and we apply some of their ideas here. In Section 2, we develop and contribute to
their notion of one graph being an algebraic dual of another graph. In Section 3, we
describe a surgery on graph embeddings given by Edmonds that, when applicable,
will turn a proper embedding of a graph G in a pseudosurface P with a pinchpoint
vertex v into a proper embedding of G in a different pseudosurface P ′ such that:
P ′ is necessarily nonorientable, P ′ has the same Euler characteristic as P , P ′ has
one fewer umbrella at v than P , and the surgically-produced proper embedding of
G in P ′ has the same topological dual as the original proper embedding of G in P .
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In Section 4, we determine that a simple graph must have at least thirteen edges
and seven vertices to be self-dual embeddable in a pseudosurface with at least
one pinchpoint, and we determine the five possibly self-dual embeddable graphs
with seven vertices and thirteen edges. We also develop our method of testing a
permutation φ of the edges of G for properties that would make φ the kind of
algebraic duality correspondence (to be defined in Section 2), which would make G
the topological dual of a cellular embedding of G in a pseudosurface. As we show in
Section 4, the pinched sphere is the only pseudosurface into which each of our five
graphs could be self-dually embedded. We conclude by way of a computer-based
search of the permutations of the thirteen edges of each of the five candidates,
that exactly two of them are self-dual embeddable in a pseudosurface, and we
use a surgery of Edmonds to produce self-dual embeddings of these graphs in the
projective plane. We also found that exactly one of our five candidates is self-dual
embeddable in the projective plane and not in the pinched sphere. We advise the
reader that the code we developed and the results we obtained may be found at [1];
the reader should consult the file README.txt before trying to read the code, the
graph files, or the results.

2. Algebraic duals, bijections, and Euler characteristic

We begin by algebraically formalizing the relationship between a graph embed-
ding and its topological dual in a manner that generalizes the relationship men-
tioned in Section 1.

For a graph G, we let V (G) and E(G) denote the vertex and edge sets, respec-
tively. We let E(G) denote the Z2 vector space consisting of formal sums of edges of
G. For X ⊂ E(G) or X ∈ E(G), we let G[X] denote the induced subgraph of G con-
sisting of the edges appearing in X. We let Z(G) denote the subspace of E(G) with
generating set {z ∈ E(G) : G[z] is a cycle in G}; Z(G) is called the cycle space of
G. An edge of a graph is a link if it is not a loop. For v ∈ V (G), we let star+(v)
and star(v) denote the sets of all edges incident to v and the links incident to v,
respectively. When appropriate, we will also let star+(v) or star(v) be an element
of E(G); we assign coefficients of 1 for all elements of E(G) appearing in the set,
and 0 otherwise. We let B(G) denote the subspace of E(G) with generating set
{star(v) : v ∈ V (G)}; B(G) is called the cut space or bond space of G. We will call
a cycle of length k and a vertex-star star(v) having k edges a k-cycle and a k-star,
respectively. In [2] and [3], Abrams and Slilaty, while formulating embeddability
criteria based in homology theory, defined the notion of a graph being an algebraic
dual of another, which we reformulate for our purposes.

Definition 2.1. [2, 3] A graph G∗ is an algebraic dual of another graph G if there
exists a bijection φ : E(G∗)→ E(G) such that φ(B(G∗)) ≤ Z(G); we say that such
a bijection φ is an algebraic duality correspondence between G∗ and G.

Proposition 2.2 will be useful in Section 4 when we determine if a graph G is
isomorphic to the topological dual of a proper embedding of G in a pseudosurface
P . For a graph subgraph H of a graph G and a vertex v of G, we let degH(v) be
the degree of v in H.

Proposition 2.2. Let G∗ be an algebraic dual of G. If φ : E(G∗) → E(G) is the
associated algebraic duality correspondence, then φ−1 is also an algebraic duality
correspondence. Therefore, G is an algebraic dual of G∗.
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Figure 4. A graph with an edge numbering that is used in Ex-
ample 2.1 to make the graph a non-component-split dual of itself.

Proof. We establish that the bijection φ−1 : E(G)→ E(G∗) satisfies φ−1(B(G)) ≤
Z(G∗) by showing that for all v ∈ V (G), G∗[φ−1(star(v))] is a disjoint union of
Eulerian subgraphs of G. We accomplish this by showing that if v∗ is a vertex of
G∗[φ−1(star(v))],

degG∗[φ−1(star(v))](v
∗)

is even.
We let loops(u) denote the set of all loops incident to a vertex u. Given that φ is

an algebraic duality correspondence, G[φ(star(v∗))] is a disjoint union of Eulerian
subgraphs of G. Let X = φ(star(v∗)) ∩ loops(v), Y = φ(star(v∗)) ∩ star(v). Thus

degG[φ(star(v∗))](v) = 2|X|+ |Y |

is even. This implies that |Y | is even.
Since φ is a bijection,

φ−1(Y ) = φ−1(φ(star(v∗)) ∩ star(v)) = φ−1(φ(star(v∗))) ∩ φ−1(star(v))

= star(v∗) ∩ φ−1(star(v)).

Let Z = φ−1(star(v)) ∩ loops(v∗). Since |Y | is even, we have that

degG∗[φ−1(star(v))](v
∗) = 2|Z|+ |φ−1(Y )| = 2|Z|+ |Y |

is even. �

Definition 2.3 allows us to algebraically capture the relationship between a prop-
erly embedded graph and its topological dual.

Definition 2.3. [2, 3] An algebraic dual G∗ of G with algebraic duality correspon-
dence φ is a component-split algebraic dual of G if for all v∗ ∈ V (G), G[φ(star+(v∗))]
is connected.

The reader should note that the condition φ(B(G∗)) ≤ Z(G) in Definition 2.1
does not imply that G∗ is a component-split algebraic dual of G, and Proposition
2.2 does not imply that G is a component-split algebraic dual of G∗. To see this,
consider Example 2.1.

Example 2.1. Consider Figure 4 and the edge bijection φ : E(G)→ E(G) defined
by: φ(1) = 4, φ(2) = 5, φ(3) = 6, φ(4) = 2, φ(5) = 3, φ(6) = 1, φ(7) = 12,
φ(8) = 11, φ(9) = 10, φ(10) = 8, φ(11) = 7, φ(12) = 9. The reader may verify
that φ and φ−1 are algebraic duality correspondences, but neither map makes G a
component-split algebraic dual of itself.
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We say that a face connected pseudosurface P is a pseudosurface having the
property that for any two faces f and f ′ of a 2-complex homeomorphic to P , there
is a sequence of faces f = f1f2 . . . fn = f ′ such that any two consecutive faces have
a common boundary edge.

For a pseudosurface P , we let χ(P ) denote the Euler characteristic of P , which, as
an invariant of P , does not depend on a cellular decomposition of P . For G→ P , we
let F (G→ P ) denote the faces of G→ P , which are the regions of the complement
of G in P . Therefore, for G→ P ,

(2.1) χ(P ) = |V (G)| − |E(G)|+ |F (G→ P )|.
Following [3, Construction 3.1], given a graph G and an algebraic dual graph G∗

with algebraic duality correspondence φ, we may construct a 2-complex K(G,G∗).
The 0-cells and 1-cells of K(G,G∗) are the vertices and edges of G, respectively.
The 2-cells of K(G,G∗) appear as follows: for each v ∈ V (G∗), we let F1, F2, . . .,
Fk denote the components of G[φ(star+(v))]; to each component Fi, we make a
choice of facial boundary walk, twice using an edge of Fi appearing as the image of
a loop of G∗, and we glue a 2-cell following our chosen facial boundary walk. The
resulting 2-complex may have pinchpoints, but it is not necessary face connected.
Moreover if G∗ is a component-split algebraic dual of G, then G∗ is isomorphic to
the topological dual of G in K(G,G∗).

Lemma 2.4. If G→ P is self-dual, then P is face connected.

Proof. This follows immediately from the definition of the dual graph and the
assumed connectedness of G. �

Lemma 2.5. [9, Theorem 1.2] For any face-connected pseudosurface P with h
handles, c crosscaps, and p pinches needed to produce P from a surface S with h
handles and c crosscaps,

χ(P ) = 2− 2h− c− p.
We will work specifically on the case that χ(P ) = χ(P ′) = 1, so, per Lemma 2.5,

to differentiate between the pinched sphere and the projective plane it will suffice
to discern the existence of a pinchpoint in P or P ′.

3. Edmonds’ surgery

Here we describe a surgery of Edmonds first put forward in [7] and further
developed by Bruhn and Diestel in [5]. The content of this section is adapted from
the proof of [10, Theorem 3.1], which is a strengthening of [5, Theorem 11].

For the duration of Section 3, G → P shall denote a proper embedding of G in
a pseudosurface P with at least one pinchpoint. Assume that one face f of G→ P
intersects two different umbrellas of a pinchpoint vertex v. Chose two umbrellas U1

and U2 of v that are intersected by f , and let fi be the intersection of f with Ui.
Let W denote a chosen facial boundary walk of f and let W be the concatenation
of two walks ω1 and ω2 in the order ω1ω2, as in Figure 5; ω1 begins by traversing
edge end 4 and ends after traversing edge end 1, and ω2 begins by traversing edge
end 2 and ends after traversing edge end 3. Let ω2 denote the reversal of the walk
ω2 and consider the closed walk W formed by concatenating the walks ω1 and ω2

traversed in the order ω1ω2. Let W be the set of facal boundary walks of G→ P ,
and let

(3.1) W ′ = (W ∪ {W ′}) \ {W} .
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Figure 5. The applicaton of Edmonds’ surgery turning W into
W ′ by reversing the subwalk ω2. The surgical modifications are
drawn in gray.

Remark 3.1. Per [10, Theorem 3.1] and [10, Corollary 3.1], the facial boundary
walks of W ′ appearing in Equation 3.1 are the facial boundary walks of another
proper embedding G→ P ′ in another pseudosurface P ′ having the following condi-
tions: P ′ has one fewer umbrella at v than P ; χ(P ′) = χ(P ); and the topological
dual of G→ P is isomorphic to the topological dual of G→ P ′.

Example 3.1. Consider the graph embedding in the pinched sphere appearing in
Figure 8. Consider the face bounded by the facial boundary walk W = adcagfa.
If we let ω1 = adca and ω2 = agfa, the walk W ′ = ω1ω2 = adcafga is the cor-
responding facial boundary walk appearing in the embedding of F2 in the projective
plane in Figure 8.

Example 3.2. Consider the graph embedding in the pinched sphere appearing in
Figure 10. Consider the face bounded by the facial boundary walk W = afbadca.
If we let ω1 = afba and ω2 = adca, the corresponding walk W ′ = ω1ω2 = afbacda
is the corresponding facial boundary walk appearing in the embedding of F5 in the
projective plane in Figure 10.

4. The main results

4.1. The smallest possibly self-dual embeddable graphs in a pseudosur-
face. Consider G → P for a face-connected pseudosurface P with at least one
pinchpoint. There are least two umbrellas of a pinchpoint vertex v of G. It is easy
to deduce (after considering Figure 2) that each umbrella must intersect at least
three edges of a properly embedded graph in order for that embedding to have a
simple dual graph, else the dual will have a loop or parallel edges. It follows that
a simple graph that is self-dual embeddable in a pseudosurface must have at least
one vertex of degree at least six and six other vertices of degree at least three. If
we let G1 be a simple graph with exactly one vertex of degree six and six other
vertices of degree three, then G1 has exactly seven vertices and twelve edges. If G1

is self-dual embedded in a face-connected pseudosurface P1, then Equation 2.1 and
Lemma 2.5 imply that

χ(P1) = 7− 12 + 7 = 2 = 2− 2 · 0− 0− 0,
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H1 H2 H3 H4 H5

Figure 6. All possible seven-edge graphs on six vertices with min-
imum degree two.

and so P1 must really be a sphere. So, if a simple graph G2 has seven vertices
and is self-dual embeddable in a pseudosurface P2 with at least one pinchpoint, G2

must have at least thirteen edges. Similarly, if G3 is a simple graph with more than
seven vertices that is self-dual embeddable in a pseudosurface, then G3 must have
at least fifteen edges. We conclude that the smallest possible self-dual embbeddable
simple graphs in a pseudosurface, in terms of the sizes of the vertex and edge sets,
are those simple graphs that have exactly seven vertices and thirteen edges, one
vertex of which has degree six, and all others of which have degree at least three;
for the remainder of this article we let Ĝ denote a graph of this form. It follows
from Equation 2.1 and Lemma 2.5 that if Ĝ→ P is self-dual, then P must be the
pinched sphere, the pseudosurface in Figure 3.

For a vertex v of G, G− v shall denote the subgraph of G induced by all edges
not incident to v. The proof of Lemma 4.1 is immediate and left to the reader.

Lemma 4.1. Let v be the vertex of degree six of a graph of the form Ĝ, and let
H = Ĝ− v. The graph H has six vertices of minimum degree two, seven edges, and
is connected.

We now transition to producing all graphs of the form H in Lemma 4.1 since the
joining of all vertices of such a graph to another vertex v will recover all graphs of
the form Ĝ. If H has a six-cycle C6, then the seventh edge is a chord joining two
vertices of C6 that are two or three edges apart in C6. Up to isomorphism, there
are two graphs of this form, and they are denoted H1 and H2 in Figure 6.

If H has a five-cycle C5, then the remaining two edges are incident to the leftover
vertex and to vertices of C5 that are one or two edges apart. The graphs of this
form, up two isomorphism, are H1 and H3 in Figure 6.

If H has a four-cycle C4, let u and v be the vertices of H not in C4. Since there
are only three edges of H not in C4, it follows that there must be an edge joining u
and v. One of the remaining edges, eu, must join u to H, and the other, ev, must
join v to H. Either eu and ev are incident to the same vertex in C4, or they are
are not. If they are not, then the resulting graph is isomorphic to either H2 or H3

in Figure 6. If they are, then the resulting graph is isomorphic to H4 in Figure 6.
If H has a three-cycle C3, then let u, v, and w be the vertices of H not in C3. If

u, v, and w do not induce a three-cycle, then, since there are four edges of H not
appearing in C3, the minimum degree of H being two implies that the vertices u,
v, and w induce a path of length two. Assume without loss of generality that the
vertices u and w are the end vertices of the path. The last two edges, eu and ew,
must join u and w to vertices of C3, respectively. If eu and ew are incident to the
same vertex of C3, then the resulting graph is isomorphic to H4. If eu and ew are
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Figure 7. A Bowtie graph, with vertices labeled.

not incident to the same vertex of C3, then the resulting graph is isomorphic to H1.
If u, v, and w induce a three-cycle, then there is only one more edge e unaccounted
for. The edge e must join a vertex in C3 to a vertex of the three-cycle induced by
u, v, or w. This graph is isomorphic to H5 in figure 6.

It follows from this discussion that each of the possibly self-dual embeddable
thirteen-edge graphs on seven vertices can be obtained from a graph Hi in Figure
6 by joining a vertex v to each of the vertices in Hi.

4.2. Computational Methods. Per the discussion preceding Lemma 2.4, if we
can find, among all permutations of the edges of a graph, an algebraic duality
correspondence φ : E(Ĝ) → E(Ĝ) making a simple graph Ĝ a component-split

algebraic dual of itself, then we know that Ĝ can be made the 1-skeleton of a
2-complex K(Ĝ, Ĝ∗) for which Ĝ is both the 1-skeleton and isomorphic to the

topological dual Ĝ∗. However, we do not know if the facial boundary walks of
K(Ĝ, Ĝ∗) and the relevant choices that may be made in constructing it may produce

a pseudosurface with at least one pinchpoint. Since Ĝ is assumed to be a simple
graph, and φ is an algebraic duality correspondence, it follows that the 3-stars, 4-
stars, and 5-stars must map to edges of 3-cycles, 4-cycles, and 5-cycles, respectively.
A 6-star could map to the edges of a 6-cycle or to a bowtie (the graph appearing
in Figure 7). If the edges of the only 6-star map to the edges of a 6-cycle, then the
disc corresponding to this 6-star must be glued according to an Eulerian walk of
that 6-cycle. If the edges of the only 6-star map to the edges of a bowtie, then there
is a consequential choice of facial boundary walk to be made: using the notation of
Figure 7, a facial boundary walk of the bowtie must be avdcvba or avcdvba.

The remainder of this section explains how we were able to expedite the computer-
powered analysis of such a component-split algebraic duality correspondence, test-
ing the possible K(Ĝ, Ĝ∗) complexes for the existence of a pinchpoint without pro-

ducing a construction of the entirety of K(Ĝ, Ĝ∗). Since we are considering graphs

with only one vertex of degree 6, we let v∗6 denote the vertex of degree 6 of Ĝ when

Ĝ is being treated as Ĝ∗ in K(Ĝ, Ĝ∗), and we will let v6 be the vertex of degree 6 of

Ĝ when Ĝ is being treated as the 1-skeleton of K(Ĝ, Ĝ∗). We proceed according to
whether the only vertex star containing six edges maps to edges of a 6-cycle or to a
bowtie. We advise the reader that we are searching for the presence of what Bruhn
and Diestel in [5] call a cluster or a local cluster, which would indicate the presence
of a pinchpoint. However, in the interest of brevity and simplicity, we refrain from
providing all of the details necessary to speak about clusters and local clusters.

Case 1: Ĝ[φ(star(v∗6))] is a 6-cycle. As mentioned earlier, there is no meaningful

choice of how to glue any of the discs of K(Ĝ, Ĝ∗). Thus, it necessarily follows that

no facial boundary walk of K(Ĝ, Ĝ∗) passes through the same vertex of Ĝ more

than once. From this it follows that each face of K(Ĝ, Ĝ∗) intersecting an umbrella
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of v intersects that umbrella exactly once. Recall that Proposition 2.2 guarantees
that φ−1 is itself an algebraic duality correspondence. Therefore, Ĝ∗[φ−1(star(v6))]

is a disjoint union of cycles that captures the incidence of faces of K(Ĝ, Ĝ∗) at

edges of Ĝ that are incident to v6; each cycle of Ĝ∗[φ−1(star(v6))] corresponds to
an umbrella of v6.

Case 2: Ĝ[φ(star(v∗6)] is a bowtie. This case breaks down into two subcases,

either v6 does not appear as the vertex of degree four in Ĝ[φ(star(v∗6)], or it does.

Case 2a: v6 does not appear as the vertex of degree four in Ĝ[φ(star(v∗6)]. In

this case, there is a vertex of Ĝ being visited twice by a facial boundary walk of
K(Ĝ, Ĝ∗), but it is not v6. So, no facial boundary walk passing through v6 visits
v6 more than once. Therefore, no matter how we chose a facial boundary walk of
the bowtie, we may detect the presence of multiple umbrellas of v6 the same way
that we did in Case 1, by counting the components of Ĝ∗[φ−1(star(v∗6)].

Case 2b: v6 does appear as the vertex of degree four in Ĝ[φ(star(v∗6)]. Just as in

Case 2a, there is a vertex of Ĝ being visited twice. However, in this case, that vertex
is v6. We first note that for a choice of a facial boundary walk of the bowtie to
produce a K(Ĝ, Ĝ∗) having two umbrellas at v6, the facial boundary walk must pass
through two umbrellas. Else, there would be four of six edges of star(v6) intersecting
only one umbrella of v6, thus making the dual graph nonsimple. Therefore, using
the aforementioned method of counting the components of Ĝ∗[φ−1(star(v6))] as a

way of counting the umbrellas of v6 will not suffice since Ĝ∗[φ−1(star(v6)] will have
only one component.

Consider Figure 7 (with v = v6) and assume that we have chosen the facial
boundary walk av6cdv6ba (we may also test the other choice av6dcv6ba). Note that
the corresponding passes through v6 are av6c and dv6b. Since we are analyzing
only the passes through v6 in all of K(Ĝ, Ĝ∗), and we’re not testing K(Ĝ, Ĝ∗)
for orientability, we may omit v6 and represent these passes as the sets {a, c} and

{d, b}. Since v∗6 is the only vertex of degree six or higher in Ĝ, then all other facial

boundaries in K(Ĝ, Ĝ∗) are cycles in Ĝ, and so all other passes of facial boundary
walks through v6 may be represented as the sets of neighbors of v6 in the cycles
forming the other facial boundary walks of K(Ĝ, Ĝ∗). Together, the collection of
all passes through v6 captures the incidence of faces at edges incident to v6; we may
use this collection to determine if there are two umbrellas at v6 by partitioning the
set of passes through v6 according to the rule that a pass belongs to a block if that
pass intersects two members of that block. If there are at least two blocks, then
there are multiple umbrellas of v6. This is enough to determine whether K(Ĝ, Ĝ∗)
is the projective plane or the pinched sphere.

Example 4.1. Consider Figure 9 and let F ∗4 denote the topological dual of the
embedding. Note that the only 6-star of the dual graph corresponds to the 6-cycle
appearing as the face in the center of the embedding. We may therefore detect
the number of umbrellas of the vertex a of F4 by counting the number of compo-
nents of F ∗4 [φ−1(star(a))] . Since there is only one component, we know, without
constructing the whole corresponding 2-complex K(F4, F

∗
4 ), that the edge bijection

φ : E(F ∗4 ) → E(F4) is a bijection between the edges of a topological dual embed-
ding of a graph in a face-connected surface. Since there is only one face-connected
surface of Euler characteristic 1 (the projective plane), we know that K(F4, F

∗
4 ) is

homeomorphic to the projective plane without constructing it.
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Figure 8. Self-dual embeddings of F2 in the pinched sphere P
and the projective plane P 2; the two black vertices labeled a in the
left-hand embedding correspond to the points that are identified
to produce an embedding of F2 in the pinched sphere.

F4 → P 2

Figure 9. A self-dual embedding of F4 in the projective plane P 2.

4.3. The results of our search for the smallest self-dual embeddable graphs
in a pseudosurface. Recall the graphs drawn in Figure 6, and let Fi be the re-
sult of joining the vertices of Hi with another vertex v. Using our program, which
follows the methods described in Section 4.2, we were able to conclude the following.
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F5 → P

a

fg
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c

d
e
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F5 → P 2

Figure 10. Self-dual embeddings of F5 in the pinched sphere P
and the projective plane P 2; the two black vertices labeled a cor-
respond to the points that are identified to produce an embedding
of F5 in the pinched sphere.

• The graph F1 has no self dual embeddings in the projective plane or the
pinched sphere, and so F1 has no self-dual embeddings in any surface or
pseudosurface.

• The graph F2 has a self-dual embedding in the pinched sphere and in the
projective plane; the latter is obtained from the former by applying the
Edmonds surgery described in Section 2. See Figure 8 for these embeddings,
and note that these embeddings are discussed further in Example 3.1. The
reader should note that the algebraic-duality correspondence given by the
embedding maps the edges of the 6-star of the dual graph to the edges of
a bowtie.

• The graph F3 has no self-dual embeddings in the projective plane or the
pinched sphere, and so F3 has no self-dual embeddings in any surface or
pseudosurface.

• The graph F4 has a self-dual embedding in the projective plane, but not
in the pinched sphere; see Figure 9 for this embedding. The reader should
note, following Example 4.1, that the algebraic-duality correspondence φ
given by the embedding maps the edges of the 6-star of the dual graph to
the edges of a 6-cycle, and that φ−1 maps the edges of the 6-star of the base
embedding of F4 to a 6-cycle in the dual graph. Per Case 1 in Section 4.2,
the former indicates that we may use φ−1 to test the induced 2-complex for
a pinchpoint covered by the vertex a of degree 6, and the single component
of the dual induced by φ−1 indicates that there is only one umbrella of a.

• The graph F5 has a self-dual embedding in the pinched sphere and in the
projective plane; the latter is obtained from the former by applying the Ed-
monds surgery described in Section 2. See Figure 10 for these embeddings,
and note that these embeddings are further discussed in Example 3.2. The
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reader should note that the algebraic-duality correspondence given by the
embedding maps the edges of the 6-star of the dual graph to the edges of
a bowtie.
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