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Abstract
Integral lattices within special polytopes provide means of enu-

merating invariant vectors. In our work, we consider the underlying
equalities that give rise to our polytopes and use them to construct
Hilbert and Markov bases for our cones.

1 Introduction

1.1 Berensetin-Zelevinsky Triangles

BZ triangles are combinatorial tools that can be used to determine the di-
mension of triple tensor product invariants. This process is described in
[BZ92][1]. Our work uses them to generate the equalities underlying our
polytopes. Let m be a positive integer. Then Tm is a set of vertices of a
graph consisting of hexagons and triangles.

Figure 1: Tm for m = 2, 3, 4

Considering m − 1, we find the number of small triangles that lay on
an edge. A BZ triangle then, formally denoted as the affine semigroup
BZ(SLm(C) are the set of all non-negative weight assignments to the vertices
of Tm that satisfy hexagon equalities: the sum of weights on opposing edges
of a hexagon must be equal.

1.2 PΓ,m

Let Γ be a trivalent general graph and let m be a positive integer as before.
Then at each vertex of Γ, place an appropriate BZ triangle. Finally, glue
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the BZ triangles together as follows.

Figure 2: Trivalent graph and overlaid BZ gluing

Note that the gluing, while it does not introduce new vertices to the
triangles, does introduce new hexagon relations. The set of all weightings
that satisfy all our restrictions is the polyhedral cone PΓ,m

1.3 Hilbert and Markov Bases

For a convex cone, there is a minimal set of integer vectors such that every
integer vector contained within the cone can be generated by a non-negative
integer linear combination of vectors in the set. The programs 4ti2 and
Sage can be used to find this bases when provided with a set of generating
equalities for the cone. These equalities are the hyperplanes that form its
boundary.

As our cone is also an affine semigroup, it has a set of relations, the
Markov basis. Therefore, by calculating both, we can give a presentation of
our cone. The aforementioned programs can also produce Markov bases.

2 Automation

2.1 Overview

Our objective was to come up with a process that would take in an m value
and a graph structure and, as an end result, yield both a Hilbert and Markov
basis for the associated cone.

This process was broken down into three steps:

1. Generate the equalities of the cone.
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2. Generate the Hilbert basis.

3. Generate the Markov basis.

2.2 BZ Code

How can a BZ triangle be encoded? The first problem that arises is the
enumeration of vertices. For a graph Γ with k vertices, we have that the
dimension of a vector in PΓ,m is k 3

2
(m − 1)(m). Once we know how many

vertices there are in our BZ triangles, we need to provide some sort of la-
beling. We chose a clockwise ordering convention, The graph with triangle
structures is spread out as follows:

Figure 3: A trivalent graph with triangles in proper form.

Every graph can be spread out so that the triangles are in a line. Once this
is done, we start with the rightmost triangle and the topmost vertex. From
there, ordering proceeds clockwise. If m is large, we start at the topmost SL2

triangle, label its three vertices clockwise, Another way of thinking about this
is that we label the vertices right to left row by row for a single triangle and
then move to the next.

With this ordering, it becomes relatively simple to generate the hexagon
relations. The gluing relations are calculated by keeping track of which ver-
tices form the outside of the triangles. Thanks to the numbering convention,
this is trivially done inside a class environment. The gluings themselves
come from an inputted list of lists that holds the underlying graph structure,
namely its edges.

Once all of this was done, the equalities were outputted in a matrix that
could be fed to Sage and 4ti2.
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2.3 Hilbert and Markov Bases

The matrix from the above code was inputted into the 4ti2 Hilbert function.
This function became less feasible by m = 4 4-vertex graphs due to computa-
tional complexity. However, in the cases in which it did terminate, its output
was transposed and fed into the Markov function. This final computation
was memory intensive and was limited to the m < 4 cases.

3 Results

The results can be found online at http://meglab.wikidot.com/research:summer2016.
However, a summary of them is included here for posterity.

Figure 4: Results

The graphs in question can be found at the link above.
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