Polytopes	Polytopes Generated from Spin Diagrams	Extremal Rays	Construction of some k-faces
00	00000	000	000
000	00	0000	00

Finding Extremal Rays of Spin Diagram Polytopes

Austin Alderete, James Chiriaco, Chris Manon, Conor Nelson, Mezel Smith, Cigole Thomas

M.E.G.L. - Polytopes

August 13, 2015

Austin Alderete, James Chiriaco, Chris Manon, Conor Nelson, Mezel Smith, Cigole Thomas

M.E.G.L. - Polytopes

Polytopes	Polytopes Generated from Spin Diagrams	Extremal Rays	Construction of some k-faces
00	00000	000	000
	000	000	

Contents

Definitions

- Feynman/Spin Diagrams
- 2 Polytopes Generated from Spin Diagrams

Austin Alderete, James Chiriaco, Chris Manon, Conor Nelson, Mezel Smith, Cigole Thomas

M.E.G.L. - Polytopes

<ロ> <同> <同> <同> < 同>

Polytopes	Polytopes Generated from Spin Diagrams	Extremal Rays	Construction of some k-faces
• o 000			000 00 0

Definitions

Polytope Definitions

Polyhedral Set: A *polyhedral set* is an intersection of finitely many half spaces.

N.B.: Polyhedral sets are convex.

Polyhedral cone: An unbounded polyhedral set.

Polytope: A bounded polyhedral set.

Polytopes	Polytopes Generated from Spin Diagrams	Extremal Rays	Construction of some k-faces
00	00000	000	000
000	00	0000	00

Definitions

Polyhedral cone versus polytope

Austin Alderete, James Chiriaco, Chris Manon, Conor Nelson, Mezel Smith, Cigole Thomas

M.E.G.L. - Polytopes

Polytopes	Polytopes Generated from Spin Diagrams	Extremal Rays	Construction of some k-faces
000			
	000	000	

Feynman/Spin Diagrams

Feynman/Spin Diagrams

Graph Definition: We define Γ to be an abstract, finite, trivalent psuedograph. The set of nodes of Γ is denoted as N(Γ), and the set of edges is denoted E(Γ).

Austin Alderete, James Chiriaco, Chris Manon, Conor Nelson, Mezel Smith, Cigole Thomas

M.E.G.L. - Polytopes

Polytopes ○○ ○●○	Polytopes Generated from Spin Diagrams 00000 00 000	Extremal Rays 000 0000 000 0 0 0	Construction of some k-faces 000 00 0
- (0.1.0)			

Feynman/Spin Diagrams

Feynman/Spin Diagrams

Note: We consider a loop two edges as it connects to a node twice.

Austin Alderete, James Chiriaco, Chris Manon, Conor Nelson, Mezel Smith, Cigole Thomas

M.E.G.L. - Polytopes

Polytopes	Polytopes Generated from Spin Diagrams	Extremal Rays	Construction of some k-faces
00	00000	000	000
000			
	000	000	

Feynman/Spin Diagrams

Feynman/Spin Diagrams cont.

Feynman/Spin Diagram: A Feynman Diagram is supported on a graph, Γ , by assigning labels to edges that stand for non-negative, real numbers that satisfy inequalities.

M.E.G.L. - Polytopes

Austin Alderete, James Chiriaco, Chris Manon, Conor Nelson, Mezel Smith, Cigole Thomas

Polytopes	Polytopes Generated from Spin Diagrams	Extremal Rays	Construction of some k-faces
00	00000	000	000
	000	000	

Contents

2 Polytopes Generated from Spin Diagrams

- \blacksquare P_{Γ} , Edge Weights, and Inequalities
- $\square P_{\Gamma}(L)$ and our polytope
- Ribbon Diagrams, Paths, and Compositions

Austin Alderete, James Chiriaco, Chris Manon, Conor Nelson, Mezel Smith, Cigole Thomas

M.E.G.L. - Polytopes

3 →

Polytopes	Polytopes Generated from Spin Diagrams	Extremal Rays	Construction of some k-faces
	●0000		
000	00	0000	00
	000	000	

Triangle Inequality

Triangle Inequality

For any triangle, ABC, the sum of the lengths of any two sides of ABC must be greater than or equal to the length of the remaining side.

This holds true for degenerate triangles as well.

Austin Alderete, James Chiriaco, Chris Manon, Conor Nelson, Mezel Smith, Cigole Thomas Finding Extremal Rays of Spin Diagram Polytopes

Polytopes	Polytopes Generated from Spin Diagrams	Extremal Rays	Construction of some k-faces
00	0000	000	000
000	00	0000	00
	000	000	

The set P_{Γ}

- $P_{\Gamma} = \left\{ (w(e_1), ..., w(e_d)) \mid e_i, e_j, e_k \text{ are connected to node } n_m \longleftrightarrow \begin{array}{c} w(e_i) \leq w(e_j) + w(e_k) \\ w(e_j) \leq w(e_k) + w(e_i) \\ w(e_k) \leq w(e_i) + w(e_j) \end{array} \right\}$
 - The set of all Feynman Diagrams (represented by ordered d-tuple of edge-weights), with underlying graph Γ.
 - We consider the following Γ, which we will affectionately call 'Dumbbell':

Polytopes	Polytopes Generated from Spin Diagrams	Extremal Rays	Construction of some k-faces
00	00000	000	000
	ŏŏo	000	0

A single element of P_{Γ} for our choice of Γ is as follows

and is represented by $(1,2,1) \in P_{\Gamma}$. Note that all triangle inequalities are satisfied at every tri-node.

Austin Alderete, James Chiriaco, Chris Manon, Conor Nelson, Mezel Smith, Cigole Thomas Finding Extremal Rays of Spin Diagram Polytopes

Polytopes	Polytopes Generated from Spin Diagrams	Extremal Rays	Construction of some k-faces
00			000 00 0
Pr. Edge Weig	thts, and Inequalities		

 P_{Γ} is the set of all such varying weights $w(e_i) = x_i \in \mathbb{R}_{\geq 0}$

given the edge-weights around tri-nodes satisfy the triangle inequalities.

Austin Alderete, James Chiriaco, Chris Manon, Conor Nelson, Mezel Smith, Cigole Thomas Finding Extremal Rays of Spin Diagram Polytopes

Polytopes	Polytopes Generated from Spin Diagrams	Extremal Rays	Construction of some k-faces
00	00000	000	000
000	00	0000	00

 P_{Γ} is an unbounded subset of \mathbb{R}^3 that satisfy a finite system of half-spaces (obtained from our triangle inequalities), which creates a unique polyhedral cone \mathcal{P} .

M.E.G.L. - Polytopes

Edges of the cone are the red arrows.

Austin Alderete, James Chiriaco, Chris Manon, Conor Nelson, Mezel Smith, Cigole Thomas

Polytopes	Polytopes Generated from Spin Diagrams	Extremal Rays	Construction of some k-faces
00	00000	000	000
	000	0000	00
D (I) and au			

 $P_{\Gamma}(L)$ and our polytope

We now introduce a new set $P_{\Gamma}(L) = \{w : E(\Gamma) \to \mathbb{R}_{\geq 0} \mid e_i, e_j, e_k \text{ are connected to node } n_m \longleftrightarrow w(e_i) + w(e_j) + w(e_k) \leq 2L\}$ where we require that $P_{\Gamma}(L) \subset P_{\Gamma}$.

It is clear that $P_{\Gamma}(L)$ is a bounded set, and in fact, is the polytope $\mathsf{P} \subset \mathcal{P}$.

Austin Alderete, James Chiriaco, Chris Manon, Conor Nelson, Mezel Smith, Cigole Thomas Finding Extremal Rays of Spin Diagram Polytopes

Polytopes	Polytopes Generated from Spin Diagrams	Extremal Rays	Construction of some k-faces
00	00000	000	000
000	000	0000	00

 $P_{\Gamma}(L)$ and our polytope

Considering the Γ Dumbbell again:

Austin Alderete, James Chiriaco, Chris Manon, Conor Nelson, Mezel Smith, Cigole Thomas

M.E.G.L. - Polytopes

Polytopes	Polytopes Generated from Spin Diagrams	Extremal Rays	Construction of some k-faces
00	00000	000	000
000	00	0000	00
	000		

Ribbon Diagrams, Paths, and Compositions

Ribbon Diagram

- We care about figuring out how we can describe points in *P* generated by the graphical analysis.
- Use these fattened version of our graphs Γ called ribbon graphs.
- Using the Γ Dumbbell, its fattened form is:

Polytopes	Polytopes Generated from Spin Diagrams	Extremal Rays	Construction of some k-faces
		0000	
	000	000	

Ribbon Diagrams, Paths, and Compositions

Paths & Compositions

- We can get certain points $X \in \mathcal{P}$ using **paths** p_i which are closed walks and each $w(e_i)$ is the number of times the path crosses through the fattened edge e_i .
- Compositions $p_{\{1,..,n\}}$ are a combination of paths $p_1,..,p_n$ where $w(e_i)$ is still equal to the total number times all the paths cross the edge e_i .

Polytopes	Polytopes Generated from Spin Diagrams	Extremal Rays	Construction of some k-faces
00			000 00 0
Dibban Diaman	Daths and Compositions		

Utilizing Dumbbell's fattened form:

The composition (in red) of two paths generate the point $(2,0,0)\in \mathcal{P}$

We can also utilize paths to determine the edges of the polyhedral cone *P*, which are also called the **Extremal Rays** (The red arrows in Dumbbell's *P* figure)

Austin Alderete, James Chiriaco, Chris Manon, Conor Nelson, Mezel Smith, Cigole Thomas Finding Extremal Rays of Spin Diagram Polytopes

Polytopes	Polytopes Generated from Spin Diagrams	Extremal Rays	Construction of some k-faces
		0000	
	000	000	

Contents

Austin Alderete, James Chiriaco, Chris Manon, Conor Nelson, Mezel Smith, Cigole Thomas

M.E.G.L. - Polytopes

・ロト ・回ト ・ヨト

Polytopes	Polytopes Generated from Spin Diagrams	Extremal Rays	Construction of some k-faces
00	00000	000	000
	000	0000	00

Simple Paths and Main Theorem

Simple Paths

What is a Simple Path?

- Consider all paths of the thickened Feynman Diagrams (Ribbon Graphs).
- A simple path is a path on a Ribbon Graph with all edge weights being less than or equal to two. ∀e_i, str(e_i) ≤ 2.
- The set of all simple paths is a subset of all paths of any given Feynman Diagram.
- Each simple path will generate a Ray. More over, specific simple paths will generate Extremal Rays.

Polytopes	Polytopes Generated from Spin Diagrams	Extremal Rays	Construction of some k-faces
		000	
		0000	
	000	000	

Simple Paths and Main Theorem

Extremal Rays

Theorem

Theorem 1.1: For any Feynman diagram Γ , a path p on Γ_R generates an extremal ray of the polytope given by \mathfrak{P}_R whenever pis a simple planar path such that every node of Γ_R is of the form: Empty, Form 1, Form 2, or Form 2E, where Form 2E occurs never or exactly twice. Furthermore, every extremal ray can be generated from some simple planar path p where every vertex of Γ_R is of the form: Empty, Form 1, Form 2, or Form 2E, where Form 2E occurs never or exactly twice.

A.A., J.C., C.M, C.N, M.S., C.T.

Polytopes	Polytopes Generated from Spin Diagrams	Extremal Rays	Construction of some k-faces
00	00000	000	000

Simple Paths and Main Theorem

Restatement of Theorem 1.

All extremal rays can be generated from paths whose nodes are of these forms. With either exactly zero or two Form 2E's. Furthermore, whenever you have a path whose nodes are of these forms, you have an extremal ray.

Polytopes	Polytopes Generated from Spin Diagrams	Extremal Rays	Construction of some k-faces
		0000	
	000	000	

Dumbbell: Extremal Rays

Example of Dumbbell

We are given the Ribbon Diagram of Dumbbell

The empty path will generate the degenerate extremal ray. (0,0,0) Dumbbell's Extremal Rays: { (0,0,0) }

Austin Alderete, James Chiriaco, Chris Manon, Conor Nelson, Mezel Smith, Cigole Thomas Finding Extremal Rays of Spin Diagram Polytopes

Polytopes	Polytopes Generated from Spin Diagrams	Extremal Rays	Construction of some k-faces
00	00000	000	000
000	000	000	0

Dumbbell: Extremal Rays

Draw a path around X.

This path will generate the extremal ray with vertex representation: (2,0,0) Dumbbell's Extremal Rays: $\{ (0,0,0), (2,0,0) \}$

Austin Alderete, James Chiriaco, Chris Manon, Conor Nelson, Mezel Smith, Cigole Thomas Finding Extremal Rays of Spin Diagram Polytopes

Polytopes	Polytopes Generated from Spin Diagrams	Extremal Rays	Construction of some k-faces
00	00000	000	000
	000	000	0

Dumbbell: Extremal Rays

Draw a path around Z.

This path will generate the extremal ray with vertex representation: (0,0,2) Dumbbell's Extremal Rays: $\{ (0,0,0), (2,0,0), (0,0,2) \}$

Austin Alderete, James Chiriaco, Chris Manon, Conor Nelson, Mezel Smith, Cigole Thomas Finding Extremal Rays of Spin Diagram Polytopes

Polytopes	Polytopes Generated from Spin Diagrams	Extremal Rays	Construction of some k-faces
00		000 000 000 0 0	000 00 0
Dunch halls East	amal Dava		

Draw a path that encompasses the whole graph.

This path will generate the extremal ray with vertex representation: (1,2,1)Dumbbell's Extremal Rays: { (0,0,0),(2,0,0),(0,0,2),(1,2,1) }

Austin Alderete, James Chiriaco, Chris Manon, Conor Nelson, Mezel Smith, Cigole Thomas Finding Extremal Rays of Spin Diagram Polytopes

Polytopes	Polytopes Generated from Spin Diagrams	Extremal Rays	Construction of some k-faces
00	00000	000	000
000	00	0000	00
	000	000	

Dumbbell: Intersection of Half-Spaces

Intersection of Half-Spaces Example for Dumbbell

We will use Mathematica to give a visual representation of Dumbbell.

Consider the Positive Orthant:

$$P_{Dumbbell} = \{ X \ge 0, Y \ge 0, Z \ge 0 \}$$

Austin Alderete, James Chiriaco, Chris Manon, Conor Nelson, Mezel Smith, Cigole Thomas

Finding Extremal Rays of Spin Diagram Polytopes

Polytopes	Polytopes Generated from Spin Diagrams	Extremal Rays	Construction of some k-faces
000			000 00 0

Dumbbell: Intersection of Half-Spaces

Now we will add the inequalities generated by \mathfrak{P}_{Γ} .

 $P_{Dumbbell} = \{ X \ge 0, Y \ge 0, Z \ge 0, 2X \ge Y, 2Z \ge Y \}$

Austin Alderete, James Chiriaco, Chris Manon, Conor Nelson, Mezel Smith, Cigole Thomas

M.E.G.L. - Polytopes

Polytopes	Polytopes Generated from Spin Diagrams	Extremal Rays	Construction of some k-faces
00	00000	000	000
	000	000	

Dumbbell: Intersection of Half-Spaces

Finally, we will include the inequalities generated by $\mathfrak{P}_{\Gamma}(L)$.

$P_{Dumbbell} = \{X \ge 0, Y \ge 0, Z \ge 0, 2X \ge Y, \\ 2Z \ge Y, 2X + Y \le 4, 2Z + Y \le 4\}$

Austin Alderete, James Chiriaco, Chris Manon, Conor Nelson, Mezel Smith, Cigole Thomas

M.E.G.L. - Polytopes

Polytopes 00 000	Polytopes Generated from Spin Diagrams 00000 00 000	Extremal Rays 000 0000 000 000 000	Construction of some k-faces 000 00 0
Dumbbell: GUI	Representation		

We have also created a Graphical User Interface (GUI) to draw and interpret these diagrams. As shown below.

<u>\$</u>	- 🗆 ×	h0]:" RegionPlot3D[x <= x+y && x <= x+y && y <= x+x &&
Export to .bx Export to mb Graph Status I will be updating year graph's status	Vertices Add vertices	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	Date writes Edges Add tes Edge Detreen: V V V V Date this stor Current Boost Set L	Outpy 0 0

Austin Alderete, James Chiriaco, Chris Manon, Conor Nelson, Mezel Smith, Cigole Thomas

M.E.G.L. - Polytopes

Polytopes oo ooo	Polytopes Generated from Spin Diagrams 00000 00 000	Extremal Rays 000 0000 000 0 0	Construction of some k-faces 000 00 0
Semigroup Algeb	ra Connection		

Semigroup Algebra Connection

- \blacksquare P_{Γ} can tell us about the algebraic geometry and the symplectic geometry of the character variety $X_q(SL_2)$.
- $\mathbf{P}_{\Gamma}(\mathsf{L})$ can be used to study more general moduli spaces and conformal field theory.
- For more info:
 - 1) Brew a pot of coffee
 - 2) See Dr. Manon

Polytopes	Polytopes Generated from Spin Diagrams	Extremal Rays	Construction of some k-faces
00	00000	000	000
	000	000	

Contents

Austin Alderete, James Chiriaco, Chris Manon, Conor Nelson, Mezel Smith, Cigole Thomas

M.E.G.L. - Polytopes

・ロト ・回ト ・ヨト

Polytopes	Polytopes Generated from Spin Diagrams	Extremal Rays	Construction of some k-faces
00	00000	000	000
	000	000	

Find the vertices on extremal rays

How to find some of the vertices of P from the paths?

Austin Alderete, James Chiriaco, Chris Manon, Conor Nelson, Mezel Smith, Cigole Thomas

M.E.G.L. - Polytopes

Polytopes	Polytopes Generated from Spin Diagrams	Extremal Rays	Construction of some k-faces
			● 00
		0000	
	000	000	

Find the vertices on extremal rays

How to find some of the vertices of P from the paths?

1. We have a point on the ray R from the path p that generates R.

Austin Alderete, James Chiriaco, Chris Manon, Conor Nelson, Mezel Smith, Cigole Thomas

M.E.G.L. - Polytopes

Polytopes	Polytopes Generated from Spin Diagrams	Extremal Rays	Construction of some k-faces
00	00000	000	● 00
	000	000	

Find the vertices on extremal rays

How to find some of the vertices of P from the paths?

- 1. We have a point on the ray R from the path p that generates R.
- 2. We need to find the vertex v on R with respect to w.

i.e., if
$$\lambda(c_1, ..., c_d) = v$$
 then, $\lambda = ??$

Austin Alderete, James Chiriaco, Chris Manon, Conor Nelson, Mezel Smith, Cigole Thomas

M.E.G.L. - Polytopes

Polytopes	Polytopes Generated from Spin Diagrams	Extremal Rays	Construction of some k-faces
00	00000	000	000
	000	0000	0

Austin Alderete, James Chiriaco, Chris Manon, Conor Nelson, Mezel Smith, Cigole Thomas

M.E.G.L. - Polytopes

Polytopes	Polytopes Generated from Spin Diagrams	Extremal Rays	Construction of some k-faces
00	00000	000	000
	000	0000	00
Initial set of ver	tices		

3. Use the leveling equality to find the vertex.

Austin Alderete, James Chiriaco, Chris Manon, Conor Nelson, Mezel Smith, Cigole Thomas Finding Extremal Rays of Spin Diagram Polytopes

Polytopes	Polytopes Generated from Spin Diagrams	Extremal Rays	Construction of some k-faces
00	00000	000	000 00
		000 0 0	

- 3. Use the leveling equality to find the vertex.
- 4. If p has a node with sum of weights 4, then $\lambda = L/2$ otherwise $\lambda = L$.

$$\lambda(c_i + c_j + c_k) = 2L$$

Austin Alderete, James Chiriaco, Chris Manon, Conor Nelson, Mezel Smith, Cigole Thomas

M.E.G.L. - Polytopes

Polytopes	Polytopes Generated from Spin Diagrams	Extremal Rays	Construction of some k-faces
000	00000	000	000
	000	000	

- 3. Use the leveling equality to find the vertex.
- 4. If p has a node with sum of weights 4, then $\lambda = L/2$ otherwise $\lambda = L$.

$$\lambda(c_i + c_j + c_k) = 2L$$

5. By varying the paths we can find all vertices on the extremal rays.

Austin Alderete, James Chiriaco, Chris Manon, Conor Nelson, Mezel Smith, Cigole Thomas Finding Extremal Rays of Spin Diagram Polytopes M.E.G.L. - Polytopes

Polytopes	Polytopes Generated from Spin Diagrams	Extremal Rays	Construction of some k-faces
00	00000	000	000
			0
	000	000	

Vertices generated from initial set

New vertices from old ones

Theorem

Let $K = \{p_1, p_2, ..., p_k\}$ be a set of paths that generate extremal rays of P such that $p_i \cap p_j = 0$ for all $i \neq j$. Then any subunion $p_{i_1} \cup ... \cup p_{i_t}$ where $p_{i_j} \in K$ represents a new vertex of $P_{\Gamma}(L)$.

Austin Alderete, James Chiriaco, Chris Manon, Conor Nelson, Mezel Smith, Cigole Thomas Finding Extremal Rays of Spin Diagram Polytopes

Polytopes	Polytopes Generated from Spin Diagrams	Extremal Rays	Construction of some k-faces
000			000 0● 0
Vertices generat	ted from initial set		

Sketch of Proof:

- 1. Any subunion represents an exterior point v of the P.
- 2. Let $mv = v_1 + v_2 \dots + v_m$ where v_i are vertices of P (using an algebraic property of the semigroup).
- 3. Levelling equality and mutually exclusive property of p_i forces each $v_j = v$.

M.E.G.L. - Polytopes

Austin Alderete, James Chiriaco, Chris Manon, Conor Nelson, Mezel Smith, Cigole Thomas Finding Extremal Rays of Spin Diagram Polytopes

Polytopes	Polytopes Generated from Spin Diagrams	Extremal Rays	Construction of some k-faces
00			000 00 •

Edges

Edges from extremal rays

- 1. The convex hull of $\{origin, v_i\}$ where v_i is a vertex formed from the path of an extremal rays.
- 2. The line segment joining v_i and $v_i + v_j$ such that $p_i \cap p_j = 0$ where p_i is the path that corresponds to the vertex v_i .

Polytopes	Polytopes Generated from Spin Diagrams	Extremal Rays	Construction of some k-faces
00	00000	000	000
	000	000	

Contents

5 Future work, acknowledgments, references

Austin Alderete, James Chiriaco, Chris Manon, Conor Nelson, Mezel Smith, Cigole Thomas

M.E.G.L. - Polytopes

A B > 4
 B > 4
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

12 ►

Polytopes	Polytopes Generated from Spin Diagrams	Extremal Rays	Construction of some k-faces
	000	000	

Future work for MEGL - Polytopes Group:

- Attempt to create the k-faces of the Face Poset.
- Learn more about the face lattices of \mathfrak{P}_{Γ} and $\mathfrak{P}_{\Gamma}(L)$.
- Understand the underlying algebra
- Study polytopes for other algebraic groups (SO(2n), SL_n, etc...)

Austin Alderete, James Chiriaco, Chris Manon, Conor Nelson, Mezel Smith, Cigole Thomas Finding Extremal Rays of Spin Diagram Polytopes