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 In the 1950’s Nash & Kuiper proved the existence of an 
isometric embedding of a flat torus in 3D Euclidean space. 
 But did not provide a visualization of such embedding 

 In the 70’s & 80’s, Gromov developed the convex integration 
technique, providing the tool for making a visualization 

 1D Convex Integration: 
 From a regular smooth curve 𝑓0 ∶ 0,1 → 𝐸2, produce a new 

curve 𝑓 whose speed is equal to a function 𝑟 with 𝑟 > 𝑓′0  
 That is, the ratio of the lengths of 𝑓0 and 𝑓 is greater than 1 

 The curve 𝑓0 (gray) can be made arbitrarily close to the 
curve 𝑓 (black) in terms of maximum deviation by 
increasing the number of oscillations and decreasing the 
amplitudes 



 Hevea Project: 
Began in 2006 and 

completed in 2012 

Collaboration among three 
different French 
Institutions 

Scientists specializing in CS 
and pure & applied math 

Approach:  With each 
successive iteration, 
calculate surface 
modifications to reduce 
error of previous layer from 
desired embedding 

 My Project: 
Began in August 2015 and 

still continuing 
Working to validate the 

proof of the 1D-to-2D 
isometric embedding 

Approach:  Strictly 
recursive with a known 
generating function 
Since there is no surface 

recalculation involved, it is 
faster 

Result is easier to analyze 

However, convergence may 
be slower 



 Hevea Project: 

 

 My Project 

• Notice these two figures are similar even though the 
approaches are very different!  

• The 2D sinusoidal fractal is the focus of this presentation. 



 Hevea Project:  My Project: 

A Lifesaver vs. More 
Iterations 

4 iterations 3 iterations 



Construction 



 Wrap a high frequency sine wave around a circle 

 Keep the frequency the same but adjust amplitude 
until desired curve arc length is achieved 

 Unfortunately, the first derivative fails to converge 
as the frequency approaches infinity 
• Achieved a surface of 𝐶0 but not 𝐶1 
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 HEVEA Project  
◦ Program revealed self-similarity, strongly 

suggested a fractal structure 

◦ Wanted to imitate their solution 

 Instead of wrinkling just along a “single” (azimuth) 
direction, inject curves normal to the previous ones. 
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 Rotate / wrap a higher frequency sine wave onto 
the previous wave: 

 

 

 

 𝑊 = 𝑉 + 𝑅 ∙
0

𝐴 ∙ sin (𝜔 ∙ 𝑡)
 

◦ 𝑅  rotates the horizontal axis onto the tangent of 
the previous wave 

 Easier to represent with complex numbers (𝑥 + 𝑖𝑦) 
because rotation becomes just multiplication 

 𝑊 = 𝑉 +
𝑉 

|𝑉| 
∙ 𝑖 ∙ 𝐴 ∙ sin(𝜔 ∙ 𝑡) 
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 The division by |𝑉|  makes analysis very difficult 

 To mitigate this problem, we can wrap the 

function |𝑉| ∙ 𝐴 ∙ sin(𝜔 ∙ 𝑡) instead 

◦ 𝑊 = 𝑉 +
𝑉 

|𝑉| 
∙ 𝑖 ∙ |𝑉| ∙ 𝐴 ∙ sin(𝜔 ∙ 𝑡) 

 Thus, we end up with 𝑊 = 𝑉 + 𝑖 ∙ 𝑉 ∙ 𝐴 ∙ sin 𝜔 ∙ 𝑡  

 FOR THE REST OF THE ANALYSIS, WE WILL 

EXAMINE THE BOXED EQUATION ABOVE 
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 For the 𝑚𝑡ℎ layer, choose 𝜔 to be  2𝜋 ∙ 𝑁0 ∙ 𝑃
𝑚, for fixed 𝑁0 and 𝑃.  

 𝑉1 = 𝑅 ∙ cos 2𝜋 ∙ 𝑡 + 𝑖 ∙ 𝑅 ∙ sin(2𝜋 ∙ 𝑡) 

 𝑉2 = 𝑉1 + 𝑖 ∙ 𝑉1 ∙ 𝐴1 ∙ sin 2𝜋 ∙ 𝑁0 ∙ 𝑃
1 ∙ 𝑡  

=  𝑉1 + 𝑉1 ∙
𝐴1
2
∙ (𝑒𝑖∙2𝜋∙𝑁0∙𝑃

1𝑡 − 𝑒−𝑖∙2𝜋∙𝑁0∙𝑃
1∙𝑡) 

 𝑉3 = 𝑉2 + 𝑖 ∙ 𝑉2 ∙ 𝐴2 ∙ sin 2𝜋 ∙ 𝑁0 ∙ 𝑃
2 ∙ 𝑡  

= 𝑉2 + 𝑉2 ∙
𝐴2
2
∙ (𝑒𝑖∙2𝜋∙𝑁0∙𝑃

2∙𝑡 − 𝑒−𝑖∙2𝜋∙𝑁0∙𝑃
2∙𝑡) 

⋮ 

 𝑉𝐿 = 𝑉𝐿−1 + 𝑖 ∙ 𝑉 𝐿−1 ∙ 𝐴𝐿−1 ∙ sin 2𝜋 ∙ 𝑁0 ∙ 𝑃
𝐿−1 ∙ 𝑡  

= 𝑉𝐿−1 + 𝑉 𝐿−1 ∙
𝐴𝐿−1
2

∙ (𝑒𝑖∙2𝜋∙𝑁0∙𝑃
𝐿−1∙𝑡 − 𝑒−𝑖∙2𝜋∙𝑁0∙𝑃

𝐿−1∙𝑡) 

 Each increase in 𝑚 adds another layer of wave (total 𝐿 layers) 

11 



 To achieve convergence for the first derivatives, the 
gain relative to the previous layer must decrease. 

 Consider this formulation for a total of 𝐿 layers:  

◦ First layer gain: 1 +
𝛽(𝐿)

1𝑞
 

◦ Second layer gain: 1 +
𝛽(𝐿)

2𝑞
 

  ⋮ 

◦ 𝐿𝑡ℎ layer gain: 1 +
𝛽(𝐿)

𝐿𝑞
 

 Total product gain (𝑘) is then:   

1 +
𝛽(𝐿)

1𝑞
1 +

𝛽(𝐿)

2𝑞
… 1 +

𝛽(𝐿)

𝐿𝑞
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 𝛽(𝐿) is chosen at the beginning so that the total product 
gain equals the desired total length magnification (𝑘) 

 The total gain increases monotonically 
◦ So, it is simple to compute 𝛽(𝐿) by bisection 

 
 
 
 
 
 
 

 Observe: for a required fixed length gain, every increase in 
layer reduces the gain for each layer because 𝛽(𝐿) 
becomes smaller 
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 As stated earlier, increasing amplitude 
increases the gain 
◦ The total gain increases monotonically 

◦ Can use bisection to determine the amplitude to 
achieve the individual gain 

◦ Limitation:  Numerical calculation of the length 
becomes increasingly difficult with the addition of 
very high frequency waves 

 Numerical accuracy problem 
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 Recall:  𝑉𝑚 = 𝑉𝑚−1 + 𝑖 ∙ 𝑉 𝑚−1 ∙ 𝐴𝑚 ∙ sin(2𝜋 ∙ 𝑁0 ∙ 𝑃
𝑚 ∙ 𝑡) 

 𝑉 𝑚 = 𝑉 𝑚−1 + 𝑖 ∙ 𝐴𝑚 ∙ 2𝜋 ∙ 𝑁0 ∙ 𝑃
𝑚 ∙ 𝑉 𝑚−1 ∙ cos 2𝜋 ∙ 𝑁0 ∙ 𝑃

𝑚 ∙ 𝑡 +
𝑖 ∙ 𝑉 𝑚−1 ∙ 𝐴𝑚 ∙ sin(2𝜋 ∙ 𝑁0 ∙ 𝑃

𝑚 ∙ 𝑡) 

 Proof that |𝑉 𝑚−1| ≪ 2𝜋 ∙ 𝑁0 ∙ 𝑃
𝑚 ∙ |𝑉 𝑚−1|: 

 |𝑉 𝑚−1| < 2𝜋 ∙ 𝑁0(1 + 𝑃 +⋯+ 𝑃𝑚−1) ∙ |𝑉 𝑚−1| 

 = 2𝜋 ∙ 𝑁0 ∙
𝑃𝑚−1

𝑃−1
 ∙ |𝑉 𝑚−1| ≈ 2𝜋 ∙ 𝑁0 ∙ 𝑃

𝑚−1 ∙ |𝑉 𝑚−1| 

 << 2𝜋 ∙ 𝑁0 ∙ 𝑃
𝑚 ∙ 𝑉 𝑚−1 (for 𝑃 sufficiently large) 

 So,  𝑉 𝑚 ≈ 𝑉 𝑚−1 +𝑖 𝐴𝑚 ∙ 
2𝜋 ∙ 𝑁0 ∙ 𝑃

𝑚 ∙ 𝑉 𝑚−1 ∙ cos 2𝜋 ∙ 𝑁0 ∙ 𝑃
𝑚 ∙ 𝑡  

 𝑉 𝑚 = |𝑉 𝑚−1| 1 + 𝐴𝑚 ∙ 2𝜋 ∙ 𝑁0 ∙ 𝑃
𝑚 2 cos2 2𝜋 ∙ 𝑁0 ∙ 𝑃

𝑚𝑡   
(For 𝑃 sufficiently large) 
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  𝑉 𝑚 𝑑𝑡
1

0
≈

 𝑉 𝑚−1
2
(1 + 2𝜋 ∙ 𝑁0 ∙ 𝑃𝑚 ∙  𝐴𝑚 2 cos2( 2𝜋 ∙ 𝑁0 ∙ 𝑃𝑚 ∙ 𝑡))  𝑑𝑡

1

0
 

=  𝑉 𝑚−1 1 +
1

2
∙ 𝐴𝑚 ∙ 2𝜋 ∙ 𝑁0 ∙ 𝑃

𝑚 2 ∙ (1 + cos 2 ∙ 2𝜋 ∙ 𝑁0 ∙ 𝑃
𝑚 ∙ 𝑡 )𝑑𝑡

1

0

 

•  |𝑉 𝑚|𝑑𝑡
1

0
= 

 𝑉 𝑚−1 1 +
2𝜋∙𝑁0∙𝑃

𝑚∙ 𝐴𝑚
2

2

1

0
+ 𝑕𝑖𝑔𝑕𝑒𝑟 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑡𝑒𝑟𝑚𝑠 

•  𝑉 𝑚 𝑑𝑡
1

0
= 1 +

2𝜋∙𝑁0∙𝑃
𝑚∙ 𝐴𝑚

2

2
∙  𝑉 𝑚−1

1

0
 𝑑𝑡 

 𝑙𝑚 ≈ 1 +
2𝜋∙𝑁0∙𝑃

𝑚∙ 𝐴𝑚
2

2
∙ 𝑙𝑚−1 

 For 𝑃 sufficiently large, the approximation becomes equal 
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-3 abs(Vdd) / [abs(Vd)*sqrt(1+ (2*pi*N*Pm)2)]

As shown in the figure above, the 
ratio of the magnitude of the 
acceleration term to that of the other 
terms is on the order of 10−3 (for R = 
1;  N = 1;  P = 100;  L = 7;  gain = 3) 



 From the previous slide, we then have 
𝑙𝑚

𝑙𝑚−1
=

1 +
2𝜋∙𝑁0∙𝑃

𝑚∙ 𝐴𝑚
2

2
 

 Match this to the 𝑚𝑡ℎ gain: 1 +
𝛽(𝐿)

𝑚𝑞  

 

 Thus, we have that:  𝐴𝑚 = 
1

2𝜋∙𝑁0∙𝑃
𝑚  

2𝛽(𝐿)

𝑚𝑞  

 Note: 

◦  1 + 𝛽(𝐿)

𝑚𝑞
𝐿
𝑚=1  converges iff  

𝛽(𝐿)

𝑚𝑞
𝐿
𝑚=1  converges   

◦ Set 𝑞 = 1 so that the product series “barely” converges so 
that ALL the 𝐴𝑚’s will go asymptotically to 0. 
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Proofs of Properties 



 Recall: 𝑉 𝑚 = 𝑉 𝑚−1 + 𝑖 ∙ 𝐴𝑚 

∙ 2𝜋 ∙ 𝑁0 ∙ 𝑃
𝑚 ∙ 𝑉 𝑚−1 ∙ cos 2𝜋 ∙ 𝑁0 ∙ 𝑃

𝑚 ∙ 𝑡  

 Then |𝑉 𝑚| ≤ 𝑉 𝑚−1 ∙ 1 + 2𝜋 ∙ 𝑁0 ∙ 𝑃
𝑚 ∙  𝐴𝑚

2  

 Note that we chose  1 +
2𝜋∙𝑁0∙𝑃

𝑚∙ 𝐴𝑚
2

2
∞
1  to equal to 

the total gain, which means that it converges 

 This implies that  1 + 2𝜋 ∙ 𝑁0 ∙ 𝑃
𝑚 ∙  𝐴𝑚

2∞
1  also 

converges as 𝑚 → ∞ since both series hinge upon the 
convergence of  2𝜋 ∙ 𝑁0 ∙ 𝑃

𝑚 ∙  𝐴𝑚
2∞

1  

 Therefore, |𝑉 𝑚| converges 
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 Minimum of |𝑉 𝑚| occurs when 
cos 2𝜋 ∙ 𝑁0 ∙ 𝑃

𝑚 ∙ 𝑡 = 0 

 |𝑉 |𝑚𝑖𝑛 = |𝑉 1 | > 0 

 Since |𝑉 |𝑚𝑖𝑛 > 0, the first derivative map is 
injective in this 2D case 

20 
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As shown in the figure, the velocity is lower bounded by 

2 ∙ 𝜋 ∙  1 + 0 ∙
𝛽

𝑚
𝐿
𝑚=1  and upper bounded by 2 ∙ 𝜋 ∙  1 + 2 ∙

𝛽

𝑚
𝐿
𝑚=1   

(for R = 1;  N = 1;  P = 100;  L = 7;  gain = 3).  Since its lower 
bound is greater than zero, the first derivative map is one-to-
one because for the 2D case, the gradient never vanishes 
implies full rank. 



 Recall that: 𝑉𝑚 = 𝑉𝑚−1 + 𝑖 ∙ 𝑉 𝑚−1 ∙ 𝐴𝑚 ∙ sin(2𝜋 ∙ 𝑁0 ∙ 𝑃
𝑚 ∙ 𝑡) 

 The minimum |𝑉𝑚| occurs when sin 2𝜋 ∙ 𝑁0 ∙ 𝑃
𝑚 ∙ 𝑡 = 0.  Then the 

minimum |𝑉𝑚| is just |𝑉1|. 
 Note:  From previous slides, we have already proven that the 

upper bound of |𝑉 𝑚|= |𝑉 |𝑚𝑎𝑥exists 

 The maximum 𝑉𝑚 occurs when sin 2𝜋 ∙ 𝑁0 ∙ 𝑃
𝑚 ∙ 𝑡 = 1.  Thus, we 

have 𝑉𝑚 ≤ 𝑉1 + |𝑉 |𝑚𝑎𝑥  𝐴𝑚
∞
1  

  = 𝑉1 + |𝑉 |𝑚𝑎𝑥 𝛽(𝐿) 
1

2𝜋∙𝑁0∙𝑃
𝑚  

2

𝑚
∞
1  

 But, 𝛽(𝐿) → 0 as 𝐿 → ∞ 

 Also,  
1

2𝜋∙𝑁0∙𝑃
𝑚  

2

𝑚
∞
1 < 𝑂(

1

𝑃𝑚
), therefore sum converges  

 We now have 𝑉𝑚 ≤ 𝑉1  and |𝑉𝑚| ≥ |𝑉1| 
 Therefore, 𝑉𝑚 = 𝑉1  
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 Define 𝜑 to be the sine fractal function, which 
maps a line of length longer than 2𝜋 onto the 
sine fractal curve 

 Want to show that the sine fractal mapping is 
isometric: 

𝑊1,𝑊2 𝑝 = 𝑑𝜑𝜀 𝑊1 , 𝑑𝜑𝜀 𝑊2 𝜑(𝑝) 

 This is equivalent to showing that the length 
of any segment along the line is equal to the 
arc length of the corresponding portion of 
the sine fractal curve. 
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 In Slide #14,  we have shown the arc length of the fractal (for sufficiently large 𝑃) is 
given by: 

  𝑉 𝑚 𝑑𝑡
𝑇0+𝜀

𝑇0
= 

lim
𝐿→∞

 𝑉 1 ∙  1 +
1

2
∙ 𝐴𝑚 ∙ 2𝜋 ∙ 𝑁0 ∙ 𝑃

𝑚 2 ∙ [1 + 𝑐𝑜𝑠 4𝜋 ∙ 𝑁0 ∙ 𝑃
𝑚 ∙ 𝑡 ]

𝐿

𝑚=1

 𝑑𝑡
𝑇0+𝜀

𝑇0

 

 Note that 𝑉 1 = 2𝜋, and let’s choose an 𝐻 such that 4𝜋 ∙ 𝑁0 ∙ 𝑃
𝐻 ≫

1

𝜀
.   

 Furthermore, as defined in Slide #20, 
1

2
∙ 𝐴𝑚 ∙ 2𝜋 ∙ 𝑁0 ∙ 𝑃

𝑚 2 =
𝛽(𝐿)

𝑚𝑞  



1

2𝜋
∙  𝑉 𝑚 𝑑𝑡 =

𝑇0+𝜀

𝑇0
 

lim
𝐿→∞

  1 +
𝛽(𝐿)

𝑚𝑞 ∙ [1 + 𝑐𝑜𝑠 4𝜋 ∙ 𝑁0 ∙ 𝑃
𝑚 ∙ 𝑡 ]𝐻

𝑚=1  ∙  1 +
𝛽(𝐿)

𝑚𝑞 ∙ [1 + 𝑐𝑜𝑠 4𝜋 ∙ 𝑁0 ∙ 𝑃
𝑚 ∙ 𝑡 ]𝑑𝑡𝐿

𝑚=𝐻+1
𝑇0+𝜀

𝑇0
 

 Note that  1 +
𝛽(𝐿)

𝑚𝑞 ∙ [1 + 𝑐𝑜𝑠 4𝜋 ∙ 𝑁0 ∙ 𝑃
𝑚 ∙ 𝑡 ]𝐻

𝑚=1  is of order 

𝑂 𝛽 𝐿 ∙ 1 + 𝑐𝑜𝑠 4𝜋 ∙ 𝑁0 ∙ 𝑃
𝑚 ∙ 𝑡 ∙ 𝑙𝑛 𝐻 + 𝛾 − 1 + 1  

 As 𝐿 → ∞, 𝛽 𝐿 → 0.  Thus,  1 +
𝛽(𝐿)

𝑚𝑞 ∙ [1 + 𝑐𝑜𝑠 4𝜋 ∙ 𝑁0 ∙ 𝑃
𝑚 ∙ 𝑡 ]𝐻

𝑚=1 → 1 
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

1

2𝜋
∙  𝑉 𝑚 𝑑𝑡 =

𝑇0+𝜀

𝑇0
 

lim
𝐿→∞

  1 +
𝛽(𝐿)

𝑚𝑞 ∙ [1 + 𝑐𝑜𝑠 4𝜋 ∙ 𝑁0 ∙ 𝑃
𝑚 ∙ 𝑡 ]𝑑𝑡𝐿

𝑚=𝐻+1
𝑇0+𝜀

𝑇0
 

 Because we chose 𝐻 to be large enough, the 𝑐𝑜𝑠 4𝜋 ∙ 𝑁0 ∙ 𝑃
𝑚 ∙ 𝑡  

terms will average out to 0 upon integration.   

 Thus,   
1

2𝜋
∙  𝑉 𝑚 𝑑𝑡 =

𝑇0+𝜀

𝑇0
𝜀 ∙ lim

𝐿→∞
 1 +

𝛽 𝐿

𝑚𝑞
𝐿
𝑚=𝐻+1 =

𝜀 ∙ lim
𝐿→∞

 1 +
𝛽 𝐿

𝑚𝑞
𝐿
𝑚=1 = 𝜀 ∙ 𝑔𝑎𝑖𝑛 

 Therefore, the sectional arc length 𝑉 𝑚 𝑑𝑡 =
𝑇0+𝜀

𝑇0
 2𝜋 ∙ 𝜀 ∙ 𝑔𝑎𝑖𝑛   

(which is independent of 𝑇0) 

 But ∆𝑙 = 2𝜋 ∙ 𝑔𝑎𝑖𝑛 ∙ ∆𝑡 =  2𝜋 ∙ 𝑔𝑎𝑖𝑛 ∙ 𝜀 

 Therefore, sectional arc length = ∆𝑙, and thus isometric 

 And isometry implies mapping of open sets to open sets 
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 The second derivative is not 
defined in the limit as 𝑚 → ∞ 

 Term coefficients in second 
derivative are proportional 

to 2𝜋 ∙ 𝑁0 ∙ 𝑃
𝑚 ∙

1

𝑚𝑞   

 𝑃𝑚 grows much faster than 𝑚𝑞; 
so, the second derivative does 
not converge (for any 𝑞) 

 Because the second derivative 
does not exist, when using this 
curve to construct 3D surfaces, 
the Gaussian curvature will not 
be well defined, as expected 
from Nash’s formulation. 
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 Gradient Existence   
 Two sine fractals are corrugated in perpendicular directions, and both 

have convergent derivatives 
 This implies the gradient exists 

 Gradient Map One-to-One 
 Have already shown for the 2D case, the map is one-to-one ⇒ the 

derivative matrix is of full rank 
 Since the two sine fractals are corrugated in orthogonal directions, the two 

gradient vectors will be linearly independent 
 This implies the 3D gradient matrix is of full rank 

 Convergence to Torus 
 Sine fractals corrugating in orthogonal directions each converges to the 

unit circle 
 This implies convergence to a torus in the 3D case  

 Isometric 
 Sine fractals are corrugated in orthogonal directions  
 Isometric along each direction  
 This implies 3D case is isometric 


