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 In the 1950’s Nash & Kuiper proved the existence of an 
isometric embedding of a flat torus in 3D Euclidean space. 
 But did not provide a visualization of such embedding 

 In the 70’s & 80’s, Gromov developed the convex integration 
technique, providing the tool for making a visualization 

 1D Convex Integration: 
 From a regular smooth curve 𝑓0 ∶ 0,1 → 𝐸2, produce a new 

curve 𝑓 whose speed is equal to a function 𝑟 with 𝑟 > 𝑓′0  
 That is, the ratio of the lengths of 𝑓0 and 𝑓 is greater than 1 

 The curve 𝑓0 (gray) can be made arbitrarily close to the 
curve 𝑓 (black) in terms of maximum deviation by 
increasing the number of oscillations and decreasing the 
amplitudes 



 Hevea Project: 
Began in 2006 and 

completed in 2012 

Collaboration among three 
different French 
Institutions 

Scientists specializing in CS 
and pure & applied math 

Approach:  With each 
successive iteration, 
calculate surface 
modifications to reduce 
error of previous layer from 
desired embedding 

 My Project: 
Began in August 2015 and 

still continuing 
Working to validate the 

proof of the 1D-to-2D 
isometric embedding 

Approach:  Strictly 
recursive with a known 
generating function 
Since there is no surface 

recalculation involved, it is 
faster 

Result is easier to analyze 

However, convergence may 
be slower 



 Hevea Project: 

 

 My Project 

• Notice these two figures are similar even though the 
approaches are very different!  

• The 2D sinusoidal fractal is the focus of this presentation. 



 Hevea Project:  My Project: 

A Lifesaver vs. More 
Iterations 

4 iterations 3 iterations 



Construction 



 Wrap a high frequency sine wave around a circle 

 Keep the frequency the same but adjust amplitude 
until desired curve arc length is achieved 

 Unfortunately, the first derivative fails to converge 
as the frequency approaches infinity 
• Achieved a surface of 𝐶0 but not 𝐶1 
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 HEVEA Project  
◦ Program revealed self-similarity, strongly 

suggested a fractal structure 

◦ Wanted to imitate their solution 

 Instead of wrinkling just along a “single” (azimuth) 
direction, inject curves normal to the previous ones. 
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 Rotate / wrap a higher frequency sine wave onto 
the previous wave: 

 

 

 

 𝑊 = 𝑉 + 𝑅 ∙
0

𝐴 ∙ sin (𝜔 ∙ 𝑡)
 

◦ 𝑅  rotates the horizontal axis onto the tangent of 
the previous wave 

 Easier to represent with complex numbers (𝑥 + 𝑖𝑦) 
because rotation becomes just multiplication 

 𝑊 = 𝑉 +
𝑉 

|𝑉| 
∙ 𝑖 ∙ 𝐴 ∙ sin(𝜔 ∙ 𝑡) 
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 The division by |𝑉|  makes analysis very difficult 

 To mitigate this problem, we can wrap the 

function |𝑉| ∙ 𝐴 ∙ sin(𝜔 ∙ 𝑡) instead 

◦ 𝑊 = 𝑉 +
𝑉 

|𝑉| 
∙ 𝑖 ∙ |𝑉| ∙ 𝐴 ∙ sin(𝜔 ∙ 𝑡) 

 Thus, we end up with 𝑊 = 𝑉 + 𝑖 ∙ 𝑉 ∙ 𝐴 ∙ sin 𝜔 ∙ 𝑡  

 FOR THE REST OF THE ANALYSIS, WE WILL 

EXAMINE THE BOXED EQUATION ABOVE 
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 For the 𝑚𝑡ℎ layer, choose 𝜔 to be  2𝜋 ∙ 𝑁0 ∙ 𝑃
𝑚, for fixed 𝑁0 and 𝑃.  

 𝑉1 = 𝑅 ∙ cos 2𝜋 ∙ 𝑡 + 𝑖 ∙ 𝑅 ∙ sin(2𝜋 ∙ 𝑡) 

 𝑉2 = 𝑉1 + 𝑖 ∙ 𝑉1 ∙ 𝐴1 ∙ sin 2𝜋 ∙ 𝑁0 ∙ 𝑃
1 ∙ 𝑡  

=  𝑉1 + 𝑉1 ∙
𝐴1
2
∙ (𝑒𝑖∙2𝜋∙𝑁0∙𝑃

1𝑡 − 𝑒−𝑖∙2𝜋∙𝑁0∙𝑃
1∙𝑡) 

 𝑉3 = 𝑉2 + 𝑖 ∙ 𝑉2 ∙ 𝐴2 ∙ sin 2𝜋 ∙ 𝑁0 ∙ 𝑃
2 ∙ 𝑡  

= 𝑉2 + 𝑉2 ∙
𝐴2
2
∙ (𝑒𝑖∙2𝜋∙𝑁0∙𝑃

2∙𝑡 − 𝑒−𝑖∙2𝜋∙𝑁0∙𝑃
2∙𝑡) 

⋮ 

 𝑉𝐿 = 𝑉𝐿−1 + 𝑖 ∙ 𝑉 𝐿−1 ∙ 𝐴𝐿−1 ∙ sin 2𝜋 ∙ 𝑁0 ∙ 𝑃
𝐿−1 ∙ 𝑡  

= 𝑉𝐿−1 + 𝑉 𝐿−1 ∙
𝐴𝐿−1
2

∙ (𝑒𝑖∙2𝜋∙𝑁0∙𝑃
𝐿−1∙𝑡 − 𝑒−𝑖∙2𝜋∙𝑁0∙𝑃

𝐿−1∙𝑡) 

 Each increase in 𝑚 adds another layer of wave (total 𝐿 layers) 
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 To achieve convergence for the first derivatives, the 
gain relative to the previous layer must decrease. 

 Consider this formulation for a total of 𝐿 layers:  

◦ First layer gain: 1 +
𝛽(𝐿)

1𝑞
 

◦ Second layer gain: 1 +
𝛽(𝐿)

2𝑞
 

  ⋮ 

◦ 𝐿𝑡ℎ layer gain: 1 +
𝛽(𝐿)

𝐿𝑞
 

 Total product gain (𝑘) is then:   

1 +
𝛽(𝐿)

1𝑞
1 +

𝛽(𝐿)

2𝑞
… 1 +

𝛽(𝐿)

𝐿𝑞
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 𝛽(𝐿) is chosen at the beginning so that the total product 
gain equals the desired total length magnification (𝑘) 

 The total gain increases monotonically 
◦ So, it is simple to compute 𝛽(𝐿) by bisection 

 
 
 
 
 
 
 

 Observe: for a required fixed length gain, every increase in 
layer reduces the gain for each layer because 𝛽(𝐿) 
becomes smaller 
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 As stated earlier, increasing amplitude 
increases the gain 
◦ The total gain increases monotonically 

◦ Can use bisection to determine the amplitude to 
achieve the individual gain 

◦ Limitation:  Numerical calculation of the length 
becomes increasingly difficult with the addition of 
very high frequency waves 

 Numerical accuracy problem 
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 Recall:  𝑉𝑚 = 𝑉𝑚−1 + 𝑖 ∙ 𝑉 𝑚−1 ∙ 𝐴𝑚 ∙ sin(2𝜋 ∙ 𝑁0 ∙ 𝑃
𝑚 ∙ 𝑡) 

 𝑉 𝑚 = 𝑉 𝑚−1 + 𝑖 ∙ 𝐴𝑚 ∙ 2𝜋 ∙ 𝑁0 ∙ 𝑃
𝑚 ∙ 𝑉 𝑚−1 ∙ cos 2𝜋 ∙ 𝑁0 ∙ 𝑃

𝑚 ∙ 𝑡 +
𝑖 ∙ 𝑉 𝑚−1 ∙ 𝐴𝑚 ∙ sin(2𝜋 ∙ 𝑁0 ∙ 𝑃

𝑚 ∙ 𝑡) 

 Proof that |𝑉 𝑚−1| ≪ 2𝜋 ∙ 𝑁0 ∙ 𝑃
𝑚 ∙ |𝑉 𝑚−1|: 

 |𝑉 𝑚−1| < 2𝜋 ∙ 𝑁0(1 + 𝑃 +⋯+ 𝑃𝑚−1) ∙ |𝑉 𝑚−1| 

 = 2𝜋 ∙ 𝑁0 ∙
𝑃𝑚−1

𝑃−1
 ∙ |𝑉 𝑚−1| ≈ 2𝜋 ∙ 𝑁0 ∙ 𝑃

𝑚−1 ∙ |𝑉 𝑚−1| 

 << 2𝜋 ∙ 𝑁0 ∙ 𝑃
𝑚 ∙ 𝑉 𝑚−1 (for 𝑃 sufficiently large) 

 So,  𝑉 𝑚 ≈ 𝑉 𝑚−1 +𝑖 𝐴𝑚 ∙ 
2𝜋 ∙ 𝑁0 ∙ 𝑃

𝑚 ∙ 𝑉 𝑚−1 ∙ cos 2𝜋 ∙ 𝑁0 ∙ 𝑃
𝑚 ∙ 𝑡  

 𝑉 𝑚 = |𝑉 𝑚−1| 1 + 𝐴𝑚 ∙ 2𝜋 ∙ 𝑁0 ∙ 𝑃
𝑚 2 cos2 2𝜋 ∙ 𝑁0 ∙ 𝑃

𝑚𝑡   
(For 𝑃 sufficiently large) 
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  𝑉 𝑚 𝑑𝑡
1

0
≈

 𝑉 𝑚−1
2
(1 + 2𝜋 ∙ 𝑁0 ∙ 𝑃𝑚 ∙  𝐴𝑚 2 cos2( 2𝜋 ∙ 𝑁0 ∙ 𝑃𝑚 ∙ 𝑡))  𝑑𝑡

1

0
 

=  𝑉 𝑚−1 1 +
1

2
∙ 𝐴𝑚 ∙ 2𝜋 ∙ 𝑁0 ∙ 𝑃

𝑚 2 ∙ (1 + cos 2 ∙ 2𝜋 ∙ 𝑁0 ∙ 𝑃
𝑚 ∙ 𝑡 )𝑑𝑡

1

0

 

•  |𝑉 𝑚|𝑑𝑡
1

0
= 

 𝑉 𝑚−1 1 +
2𝜋∙𝑁0∙𝑃

𝑚∙ 𝐴𝑚
2

2

1

0
+ 𝑖𝑔𝑒𝑟 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑡𝑒𝑟𝑚𝑠 

•  𝑉 𝑚 𝑑𝑡
1

0
= 1 +

2𝜋∙𝑁0∙𝑃
𝑚∙ 𝐴𝑚

2

2
∙  𝑉 𝑚−1

1

0
 𝑑𝑡 

 𝑙𝑚 ≈ 1 +
2𝜋∙𝑁0∙𝑃

𝑚∙ 𝐴𝑚
2

2
∙ 𝑙𝑚−1 

 For 𝑃 sufficiently large, the approximation becomes equal 
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-3 abs(Vdd) / [abs(Vd)*sqrt(1+ (2*pi*N*Pm)2)]

As shown in the figure above, the 
ratio of the magnitude of the 
acceleration term to that of the other 
terms is on the order of 10−3 (for R = 
1;  N = 1;  P = 100;  L = 7;  gain = 3) 



 From the previous slide, we then have 
𝑙𝑚

𝑙𝑚−1
=

1 +
2𝜋∙𝑁0∙𝑃

𝑚∙ 𝐴𝑚
2

2
 

 Match this to the 𝑚𝑡ℎ gain: 1 +
𝛽(𝐿)

𝑚𝑞  

 

 Thus, we have that:  𝐴𝑚 = 
1

2𝜋∙𝑁0∙𝑃
𝑚  

2𝛽(𝐿)

𝑚𝑞  

 Note: 

◦  1 + 𝛽(𝐿)

𝑚𝑞
𝐿
𝑚=1  converges iff  

𝛽(𝐿)

𝑚𝑞
𝐿
𝑚=1  converges   

◦ Set 𝑞 = 1 so that the product series “barely” converges so 
that ALL the 𝐴𝑚’s will go asymptotically to 0. 
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Proofs of Properties 



 Recall: 𝑉 𝑚 = 𝑉 𝑚−1 + 𝑖 ∙ 𝐴𝑚 

∙ 2𝜋 ∙ 𝑁0 ∙ 𝑃
𝑚 ∙ 𝑉 𝑚−1 ∙ cos 2𝜋 ∙ 𝑁0 ∙ 𝑃

𝑚 ∙ 𝑡  

 Then |𝑉 𝑚| ≤ 𝑉 𝑚−1 ∙ 1 + 2𝜋 ∙ 𝑁0 ∙ 𝑃
𝑚 ∙  𝐴𝑚

2  

 Note that we chose  1 +
2𝜋∙𝑁0∙𝑃

𝑚∙ 𝐴𝑚
2

2
∞
1  to equal to 

the total gain, which means that it converges 

 This implies that  1 + 2𝜋 ∙ 𝑁0 ∙ 𝑃
𝑚 ∙  𝐴𝑚

2∞
1  also 

converges as 𝑚 → ∞ since both series hinge upon the 
convergence of  2𝜋 ∙ 𝑁0 ∙ 𝑃

𝑚 ∙  𝐴𝑚
2∞

1  

 Therefore, |𝑉 𝑚| converges 
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 Minimum of |𝑉 𝑚| occurs when 
cos 2𝜋 ∙ 𝑁0 ∙ 𝑃

𝑚 ∙ 𝑡 = 0 

 |𝑉 |𝑚𝑖𝑛 = |𝑉 1 | > 0 

 Since |𝑉 |𝑚𝑖𝑛 > 0, the first derivative map is 
injective in this 2D case 
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As shown in the figure, the velocity is lower bounded by 

2 ∙ 𝜋 ∙  1 + 0 ∙
𝛽

𝑚
𝐿
𝑚=1  and upper bounded by 2 ∙ 𝜋 ∙  1 + 2 ∙

𝛽

𝑚
𝐿
𝑚=1   

(for R = 1;  N = 1;  P = 100;  L = 7;  gain = 3).  Since its lower 
bound is greater than zero, the first derivative map is one-to-
one because for the 2D case, the gradient never vanishes 
implies full rank. 



 Recall that: 𝑉𝑚 = 𝑉𝑚−1 + 𝑖 ∙ 𝑉 𝑚−1 ∙ 𝐴𝑚 ∙ sin(2𝜋 ∙ 𝑁0 ∙ 𝑃
𝑚 ∙ 𝑡) 

 The minimum |𝑉𝑚| occurs when sin 2𝜋 ∙ 𝑁0 ∙ 𝑃
𝑚 ∙ 𝑡 = 0.  Then the 

minimum |𝑉𝑚| is just |𝑉1|. 
 Note:  From previous slides, we have already proven that the 

upper bound of |𝑉 𝑚|= |𝑉 |𝑚𝑎𝑥exists 

 The maximum 𝑉𝑚 occurs when sin 2𝜋 ∙ 𝑁0 ∙ 𝑃
𝑚 ∙ 𝑡 = 1.  Thus, we 

have 𝑉𝑚 ≤ 𝑉1 + |𝑉 |𝑚𝑎𝑥  𝐴𝑚
∞
1  

  = 𝑉1 + |𝑉 |𝑚𝑎𝑥 𝛽(𝐿) 
1

2𝜋∙𝑁0∙𝑃
𝑚  

2

𝑚
∞
1  

 But, 𝛽(𝐿) → 0 as 𝐿 → ∞ 

 Also,  
1

2𝜋∙𝑁0∙𝑃
𝑚  

2

𝑚
∞
1 < 𝑂(

1

𝑃𝑚
), therefore sum converges  

 We now have 𝑉𝑚 ≤ 𝑉1  and |𝑉𝑚| ≥ |𝑉1| 
 Therefore, 𝑉𝑚 = 𝑉1  
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 Define 𝜑 to be the sine fractal function, which 
maps a line of length longer than 2𝜋 onto the 
sine fractal curve 

 Want to show that the sine fractal mapping is 
isometric: 

𝑊1,𝑊2 𝑝 = 𝑑𝜑𝜀 𝑊1 , 𝑑𝜑𝜀 𝑊2 𝜑(𝑝) 

 This is equivalent to showing that the length 
of any segment along the line is equal to the 
arc length of the corresponding portion of 
the sine fractal curve. 
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 In Slide #14,  we have shown the arc length of the fractal (for sufficiently large 𝑃) is 
given by: 

  𝑉 𝑚 𝑑𝑡
𝑇0+𝜀

𝑇0
= 

lim
𝐿→∞

 𝑉 1 ∙  1 +
1

2
∙ 𝐴𝑚 ∙ 2𝜋 ∙ 𝑁0 ∙ 𝑃

𝑚 2 ∙ [1 + 𝑐𝑜𝑠 4𝜋 ∙ 𝑁0 ∙ 𝑃
𝑚 ∙ 𝑡 ]

𝐿

𝑚=1

 𝑑𝑡
𝑇0+𝜀

𝑇0

 

 Note that 𝑉 1 = 2𝜋, and let’s choose an 𝐻 such that 4𝜋 ∙ 𝑁0 ∙ 𝑃
𝐻 ≫

1

𝜀
.   

 Furthermore, as defined in Slide #20, 
1

2
∙ 𝐴𝑚 ∙ 2𝜋 ∙ 𝑁0 ∙ 𝑃

𝑚 2 =
𝛽(𝐿)

𝑚𝑞  



1

2𝜋
∙  𝑉 𝑚 𝑑𝑡 =

𝑇0+𝜀

𝑇0
 

lim
𝐿→∞

  1 +
𝛽(𝐿)

𝑚𝑞 ∙ [1 + 𝑐𝑜𝑠 4𝜋 ∙ 𝑁0 ∙ 𝑃
𝑚 ∙ 𝑡 ]𝐻

𝑚=1  ∙  1 +
𝛽(𝐿)

𝑚𝑞 ∙ [1 + 𝑐𝑜𝑠 4𝜋 ∙ 𝑁0 ∙ 𝑃
𝑚 ∙ 𝑡 ]𝑑𝑡𝐿

𝑚=𝐻+1
𝑇0+𝜀

𝑇0
 

 Note that  1 +
𝛽(𝐿)

𝑚𝑞 ∙ [1 + 𝑐𝑜𝑠 4𝜋 ∙ 𝑁0 ∙ 𝑃
𝑚 ∙ 𝑡 ]𝐻

𝑚=1  is of order 

𝑂 𝛽 𝐿 ∙ 1 + 𝑐𝑜𝑠 4𝜋 ∙ 𝑁0 ∙ 𝑃
𝑚 ∙ 𝑡 ∙ 𝑙𝑛 𝐻 + 𝛾 − 1 + 1  

 As 𝐿 → ∞, 𝛽 𝐿 → 0.  Thus,  1 +
𝛽(𝐿)

𝑚𝑞 ∙ [1 + 𝑐𝑜𝑠 4𝜋 ∙ 𝑁0 ∙ 𝑃
𝑚 ∙ 𝑡 ]𝐻

𝑚=1 → 1 
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1

2𝜋
∙  𝑉 𝑚 𝑑𝑡 =

𝑇0+𝜀

𝑇0
 

lim
𝐿→∞

  1 +
𝛽(𝐿)

𝑚𝑞 ∙ [1 + 𝑐𝑜𝑠 4𝜋 ∙ 𝑁0 ∙ 𝑃
𝑚 ∙ 𝑡 ]𝑑𝑡𝐿

𝑚=𝐻+1
𝑇0+𝜀

𝑇0
 

 Because we chose 𝐻 to be large enough, the 𝑐𝑜𝑠 4𝜋 ∙ 𝑁0 ∙ 𝑃
𝑚 ∙ 𝑡  

terms will average out to 0 upon integration.   

 Thus,   
1

2𝜋
∙  𝑉 𝑚 𝑑𝑡 =

𝑇0+𝜀

𝑇0
𝜀 ∙ lim

𝐿→∞
 1 +

𝛽 𝐿

𝑚𝑞
𝐿
𝑚=𝐻+1 =

𝜀 ∙ lim
𝐿→∞

 1 +
𝛽 𝐿

𝑚𝑞
𝐿
𝑚=1 = 𝜀 ∙ 𝑔𝑎𝑖𝑛 

 Therefore, the sectional arc length 𝑉 𝑚 𝑑𝑡 =
𝑇0+𝜀

𝑇0
 2𝜋 ∙ 𝜀 ∙ 𝑔𝑎𝑖𝑛   

(which is independent of 𝑇0) 

 But ∆𝑙 = 2𝜋 ∙ 𝑔𝑎𝑖𝑛 ∙ ∆𝑡 =  2𝜋 ∙ 𝑔𝑎𝑖𝑛 ∙ 𝜀 

 Therefore, sectional arc length = ∆𝑙, and thus isometric 

 And isometry implies mapping of open sets to open sets 
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 The second derivative is not 
defined in the limit as 𝑚 → ∞ 

 Term coefficients in second 
derivative are proportional 

to 2𝜋 ∙ 𝑁0 ∙ 𝑃
𝑚 ∙

1

𝑚𝑞   

 𝑃𝑚 grows much faster than 𝑚𝑞; 
so, the second derivative does 
not converge (for any 𝑞) 

 Because the second derivative 
does not exist, when using this 
curve to construct 3D surfaces, 
the Gaussian curvature will not 
be well defined, as expected 
from Nash’s formulation. 
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 Gradient Existence   
 Two sine fractals are corrugated in perpendicular directions, and both 

have convergent derivatives 
 This implies the gradient exists 

 Gradient Map One-to-One 
 Have already shown for the 2D case, the map is one-to-one ⇒ the 

derivative matrix is of full rank 
 Since the two sine fractals are corrugated in orthogonal directions, the two 

gradient vectors will be linearly independent 
 This implies the 3D gradient matrix is of full rank 

 Convergence to Torus 
 Sine fractals corrugating in orthogonal directions each converges to the 

unit circle 
 This implies convergence to a torus in the 3D case  

 Isometric 
 Sine fractals are corrugated in orthogonal directions  
 Isometric along each direction  
 This implies 3D case is isometric 


