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Timeline

> In the 1950’s Nash & Kuiper proved the existence of an
isometric embedding of a flat torus in 3D Euclidean space.
% But did not provide a visualization of such embedding
> In the 70’s & 80’s, Gromov developed the convex integration
technique, providing the tool for making a visualization
» 1D Convex Integration:
< From a regular smooth curve f, : [0,1] - E?, produce a new
curve f whose speed is equal to a function r with r > |[f', |
= That is, the ratio of the lengths of f; and f is greater than 1
% The curve f, (gray) can be made arbitrarily close to the
curve f (black) in terms of maximum deviation by
increasing the number of oscillations and decreasing the
amplitudes




Timeline (cont.)

» Hevea Project:

»Began in 2006 and
completed in 2012

» Collaboration among three
different French
Institutions

»Scientists specializing in CS
and pure & applied math

» Approach: With each

successive iteration,

calculate surface
modifications to reduce
error of previous layer from
desired embedding

» My Project:

»Began in August 2015 and
still continuing
» Working to validate the
proof of the 1D-to-2D
isometric embedding
» Approach: Strictly
recursive with a known
generating function
> Since there is no surface
recalculation involved, it is
faster
> Result is easier to analyze

» However, convergence may
be slower




2D Solutions

» Hevea Project: » My Project

« Notice these two figures are similar even though the
approaches are very different!
The 2D sinusoidal fractal is the focus of this presentation.




3D Solutions

» Hevea Project: » My Project:
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A Lifesaver vs. More
Iterations







Initial Idea

~ Wrap a high frequency sine wave around a circle

~ Keep the frequency the same but adjust amplitude
until desired curve arc length is achieved

» Unfortunately, the first derivative fails to converge
as the frequency approaches infinity
- Achieved a surface of ¢° but not C*




New ldea
» HEVEA Project

- Program revealed self-similarity, strongly

suggested a fractal structure
- Wanted to imitate their solution

» Instead of wrinkling just along a “single” (azimuth)
direction, inject curves normal to the previous ones.
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Arriving at the Sine Fractal

» Rotate / wrap a higher frequency sine wave onto
the previous wave:

il — B

— = = 0
' W:V_I_R'(A-sin(w-t))
- R rotates the horizontal axis onto the tangent of
the previous wave
» Easier to represent with complex numbers (x + iy)
because rotation becomes just multiplication

> W=V+|—Itl-i-A-sin(a)-t)




Approximation / Formulation

» The division by |V| makes analysis very difficult
» To mitigate this problem, we can wrap the
function |V|- A4 - sin(w - t) instead

: W=V+%-i-|V'|-A-sin(a)-t)

 Thus, we end up withW =V + -V -A"sin(w - 0)
» FOR THE REST OF THE ANALYSIS, WE WILL
EXAMINE THE BOXED EQUATION ABOVE
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Construction

» For the m!" layer, choose w to be 2w -N,-P™, for fixed N, and P.
» Vi =R-cos(2m-t)+i-R-sin(2m-t)
» Vy =V, +i-V;-A;-sin(Qm-Ny-PL-t)

. Al . 1 . 1
=V +V, - —- (el-Zn-NO-P t _ e—l'ZTC'NO'P -t)
1 1 2

4 V3:V2+lV2A251n(27TN0P2t)

A . .
; 2 TN P2 —i-277N~-P2-
—|/2+]/2._2 .(eLZnNOP t e U1'21mNy'P t)

4 VL = VL—l + l . VL—l . AL—l . SiIl(ZTL' . NO . PL—l . t)
= VL_l + VL_l . AL—l . (elZT[NOPL_lt _ e_i.zn-.NO_PL—l_t)

2
» Each increase in m adds another layer of wave (total L layers)
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Gain Distribution

» To achieve convergence for the first derivatives, the
gain relative to the previous layer must decrease.

» Consider this formulation for a total of L layers:
> First layer gain:J(l + B(L))

14

> Second layer gain:J(l + B(L))

24

o L layer gain:J(l + B(L))

L4

» Total product gain (k) is then:

[:+52) [652)- [0 52
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Gain Distribution (cont.)

» B(L) is chosen at the beginning so that the total product
gain equals the desired total length magnification (k)

» The total gain increases monotonically
> S0, it is simple to compute B(L) by bisection

FBinary Search for gain of each wrap

Brnin = 0; Bmax = gain - 1; g = 1;
for p = 1:32
Bmean = (Bmin + Bma=x)./2:
g_est = prod(sgre(l + Bmean.,/[1: (L-1)]1.7g)):
if g_est > gain
Emax = Bmean;
else
BEmin = Bmean;
end
end

Bmean = (Bmax + Bmin)/2:

» Observe: for a required fixed length gain, every increase in
layer reduces the gain for each layer because pB(L)
becomes smaller




Finding Amplitude (Exact Method)

» As stated earlier, increasing amplitude
increases the gain

> The total gain increases monotonically

> Can use bisection to determine the amplitude to
achieve the individual gain

- Limitation: Numerical calculation of the length
becomes increasingly difficult with the addition of
very high frequency waves

- Numerical accuracy problem
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Length Derivation

> Recall: V,=V,,_;+i-V, 1 A, sin(2m-Ny-P™-t)

>V, =V, 1+i"Ay  2m-Ny-P™-V,_1-cos(2m-Ny-P™-t) +
i Vo1 Ay -sin(2m-Ny-P™-t)

> Proof that |V,,,_| < 2m - Ny P™ - |V,,_4]:
» |Viet| <21 No(1+ P+ -+ P™ 1Y) - |V 4]

» =21 Ny _PP_—11 Vinal = 21 No - P71+ V4|

> << 2m:Ny-P™-|V,_,|(for P sufficiently large)

> So, V.=V, {1 +iA,"
2N P™ -V, -cos(2m- Ny - P™ - t)

> V| = Vo1V 1+ (A - 21 Ny - P™)2 cos2(2m + Ny - P™t)
(For P sufficiently large)

15



Length Derivation (cont.)

> folle|dt ~

fol\/|Vm_1|2(1 + (2m - Ny - P™ - A,)?cos?(2m+- Ny - P™-t)) dt

1
. 1
=f |Vm_1|\]1+§-(Am-27r-N0-Pm)z-(1+cos(2-2n-N0-Pm-t))dt
0

1. -
Jo Vmldt =

. . . . 2
f01|Vm_1|J[1 + w] + higher integer frequency terms

Ml = J[1 4 CMT ] g e

. .pm. 2
3 lmz\/[1+—(2nN°I; Am)]'lm—1

»  For P sufficiently large, the approximation becomes equal

\’3\%
%

0 t
0 1000 2000 3000 4000 5000 6000 7000 8000

As shown in the figure above, the
ratio of the magnitude of the
acceleration term to that of the other
terms is on the order of 1073 (for R =
1; N=1; P=100; L=7; gain = 3)
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Finding Amplitude
(Approximation)

» From the previous slide, we then have m_ _
m-—1
. .pm. 2
\/[1+(2TL'NOP Am)]

2

» Match this to the mt* gain: \/(1 + ’m))

ma

» Thus, we have that: 4, = —— 2p(L)
2m-Nyg-P™M A md
» Note:

L4 (1 + %) converges iff Zm:1 converges

> Set g = 1 so that the Froduct series “barely” converges so
that ALL the A,,,’s wil

go asymptotically to 0.
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Derivative Convergence (C1)

> Recall: V, =V, _,+i- 4,
2w+ Nog-P™ -V, _;-cos(2m- Ny - P™ - t)

> Then |Vp| < [Vioo| -V [1+ Q@r - Ny - P+ A,,)?]

(27TNO

.pm, 2
» Note that we chose H‘f’\/[l + Pz Am) ] to equal to
the total gain, which means that it converges

» This implies that [[/[1 + 2 Ny - P™ - A,,)?] also
converges as m — oo since both series hinge upon the
convergence of X3(2m - Ny - P™ - A,,)?

» Therefore, |I7,,| converges

19



First Derivative Injective

» Minimum of |V,,| occurs when
cos(2m Ny P™-t) =0

> |V|min — |V1 | >0

» Since |V|,, > 0, the first derivative map is
injective in this 2D case

30
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Velocity Magitude
-

As shown in the figure, the velocity is lower bounded by

21 [Ty f1+0-£and upper bounded by 2 -7 - [14_; f1+2-§
(forR=1; N=1; P=100; L =7; gain = 3). Since its lower
bound is greater than zero, the first derivative map is one-to-

one because for the 2D case, the gradient never vanishes
implies full rank.




Convergence to Unit Circle

> Recall that: V,, =V,,_y +i-V,_; A4, -sin(2m - Ny - P™ - t)

» The minimum |V,,| occurs when sin(2r - Ny - P™-t) = 0. Then the
minimum |V,,| is just [V;].

» Note: From previous slides, we have already proven that the
upper bound of |V,|= |V|mer€Xists

» The maximum V,, occurs when sin(2r - N, - P™ - t) = 1. Thus, we
have V| < V1| + |VImax 25 Am

1 2

= V| + |V|max\/.B(L) chn 2m-No-P™ m
» But, JB(L)—>0asL - oo

1
27T"No-P™

» Also, ¥7° \/% < O(Pim), therefore sum converges

» We now have |V,| < |V;| and |V,,,| = |V4]
» Therefore, |V,,| = |V4]
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Isometric

» Define ¢ to be the sine fractal function, which
maps a line of length longer than 2w onto the
sine fractal curve

» Want to show that the sine fractal mapping is
Isometric:

(W1, W3, = {de(W1), do, (W2)>g0(p)

» This is equivalent to showing that the length
of any segment along the line is equal to the
arc length of the corresponding portion of
the sine fractal curve.
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Isometric (cont.)

» In Slide #14, we have shown the arc length of the fractal (for sufficiently large P) is

given by:
To+e|y:
4 fTOO |Vm|dt =
T0+£ . L 1
Llim |V1| : 1_[ 1+E-(Am-2n-N0-Pm)2-[1+cos(4n-N0-Pm-t)] dt
0 m=1

» Note that |[V}| = 2m, and let’s choose an H such that 4z - N, - P# > 3.

» Furthermore, as defined in Slide #20, %-(A 2w+ No - P™)?% = i(ﬁz)
1 T0+€ . _
b E.fTo |Vm|dt =
l!lm f7€0+8 \/1 + — B(L) [1 + COS(47T NO pm. t)] m H+1\/1 + —= B(L) [1 + COS(4T[ . NO . pm. t)]dt

» Note that 1'[5,:1\/(1 + ﬁ(L)) [1+ cos(4m - Ny - P™-t)] is of order
O{B(L)-[1+ cos(4m-Ny-P™-t)]-[In(H)+y —1] + 1}

» As L — oo, B(L) » 0. Thus, \/(1 + B(L)) [1+ cos(4m-Ny-P™m-t)] > 1




Isometric (cont.)

1 T0+€

y — |V |dt—
Zn
lim fT"*g L _ H+1\/1+”’() [1 + cos(4m - Ny - P™ - t)]dt

» Because we chose H to be large enough, the cos(4m - Ny - P™ - t)
terms will average out to 0 upon integration.

» Thus, E T°+E|V |dt—£ llm | A /1+B(L)
g Lhm]_[m 1 /1+&—8 gain

» Therefore, the sectional arc Iengthf
(which is independent of T,)

» But Al =2m-gain-At = 2n - gain- ¢

» Therefore, sectional arc length = Al, and thus isometric

And isometry implies mapping of open sets to open sets

T0+8

|V |dt= 2w - € gain
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Acceleration

> The second derivative is not
defined in the limit as m — o

~ Term coefficients in second
derivative  are proportional

1 x 10™ Large Acceleration

to 2w - Ny - P™- |— L.

md 1
» P™ grows much faster than m¢?;

so, the second derivative does
not converge (for any q)

- Because the second derivative
does not exist, when using this

curve to construct 3D surftaces,

the Gaussian curvature will not 2

be well defined, as expected

from Nash’s formulation.




Advancing to 3D (Hypothesizing)

» Gradient Existence

= Two sine fractals are corrugated in perpendicular directions, and both
have convergent derivatives

= This implies the gradient exists
» Gradient Map One-to-One

= Have already shown for the 2D case, the map is one-to-one = the
derivative matrix is of full rank

= Since the two sine fractals are corrugated in orthogonal directions, the two
gradient vectors will be linearly independent

= This implies the 3D gradient matrix is of full rank

» Convergence to Torus

= Sine fracltals corrugating in orthogonal directions each converges to the
unit circle

= This implies convergence to a torus in the 3D case
» lsometric

= Sine fractals are corrugated in orthogonal directions

= Isometric along each direction

= This implies 3D case is isometric




