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Abstract. We are studying the dynamics of the action of outer automorphism group, Out(F2) on the

character variety, X(F2, SL2((Fq)) for a prime q. One of the ways to understand the dynamics is looking at
the growth of the maximum orbit length with the increase in prime q. We analysed the orbit growth of few

outer automorphisms using Mathematica. The elements of Out(F2) exhibiting a logarithmic growth rate in

the maximum orbit length is particularly interesting. Using Mathematica enabled the visualization of orbits
in F3

q . We were also able to identify some elements of Out(F2) whose maximum orbit length is the same.

A possible future course is to determine the arithmetic ergodicity of the above action, in particular, the

action of the subgroups generated by a subset of generators of Out(F2).
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1. Introduction

1.1. SL2(R) Character Variety of a Free Group: Let R be a commmutative ring with identity. Define

SL2(R) =

{[
a b
c d

]
: a, b, c, d ∈ R and ad− bc = 1

}
.

Then SL2(R) is a group under usual matrix multiplication. Let Fr be the free group of rank r generated
by {γ1, ..., γr} and Hom(Fr,SL2(R)) be the set of all group homomorphisms from Fr to SL2(R).

Lemma 1.1. There exists a set theoretic bijection between Hom(Fr,SL2(R))and SL2(R)r.

Proof. Define the map E : Hom(Fr,SL2(R))→ SL2(R)r given by

ρ 7−→ (ρ(γ1), ..., ρ(γr))

Then E is well defined since ρ(γi) ∈ SL2(R) for all ρ ∈Hom(Fr,SL2(R)). Let
m∏
i=1

γni
ji

be an arbritary element

of Fr and ρ1, ρ2 ∈ Hom(Fr,SL2(R)). Since ρ1 and ρ2 are homomorphisms,

E(ρ1) = E(ρ2)⇔ ρ1(γi) = ρ2(γi)

ρ1(

m∏
i=1

γni
ji

) =

m∏
i=1

ρ1(γni
ji

) =

m∏
i=1

ρ2(γni
ji

) = ρ2(

m∏
i=1

γni
ji

)
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Therefore ρ1 = ρ2 and hence E is one-one.
If (A1, ..., Ar) ∈ SL2(R)r, define ρ by assigning ργi = Ai. Then ρ is a well defined function and hence can
be extended to a homomorphism as Fr is free. It follows that ρ is a surjection and thereby a bijection. �

Consider the ring (S,+, ∗) = R[X111, X121, X211, X221, ..., X11r, X12r, X21r, X22r], the polynomial ring on
4r variables and let ∆ = 〈X111X221 −X121X211 − 1, ..., X11rX22r −X12rX21r−1〉 be the ideal generated by
the given relations. Then the quotient ring S/∆ is denoted by R[Hom(Fr,SL2(R))].

Lemma 1.2. The groups SL2(R) acts on the set R[Hom(Fr,SL2(R))] as follows:

A : SL2(R)×R[Hom(Fr,SL2(R))] −→ R[Hom(Fr,SL2(R))]

g · (f + ∆) = A(g, f + ∆) = f(g−1X1g, ..., g
−1Xrg) + ∆

where Xi =

(
X11i X12i

X21i X22i

)
, g ∈ SL2(R), and f ∈ S .

Proof. We want to show that the above defined relation is indeed an action.

1. A is well defined:
Let f ′, f̃ ∈ f + ∆. We want to show that A(f ′) = A(f̃). f ′ − f̃ ∈ ∆ ⇒ ∃ h1, ..., hr ∈ S such that

f ′ = f̃ +
r∑
i=1

hi ∗ (Det(Xi) − 1) where Det(Xi) = X11iX22i −X12iX21i denotes the determinant of

the 2× 2 matrix Xi. Then

A(f ′) = f ′(..., g−1Xig, ...) = f̃(..., g−1Xig, ...) +

r∑
i=1

hi(..., g
−1Xig, ...) ∗ (Det(g−1Xig)− 1)

= f̃(..., g−1Xig, ...) + ∆ = A(f̃)

2. Let e be the multiplicative identity of R and I =

[
e 0
0 e

]
. Then

A(I, f + ∆) = f(I−1X1I, ..., I
−1XrI) + ∆

= f(X1, ..., Xr) + ∆

Thus I acts trivially.
3. Finally it remains to show that g · (h · f + ∆)) = (gh) · (f + ∆) for all g, h ∈ SL2(R) and f ∈ S.

g · (h · f + ∆)) = A(g,A(h, f + ∆))

= A(g, f(..., h−1Xih, ..) + ∆)

= f(..., h−1g−1Xigh, ...) + ∆

= f(..., (gh)−1Xi(gh), ...) + ∆

= A(gh, f + ∆) = (gh) · (f + ∆)

�

1.2. Ring of Invariants. Consider the set of invariants denoted by R[Hom(Fr,SL2(R))]SL2(R) under the
above action defined as {f + ∆ ∈ R[ Hom(Fr,SL2(R))] | g · (f + ∆) = f + ∆ ∀g ∈ SL2(R)}.

Lemma 1.3. R[Hom(Fr,SL2(R))]SL2(R) is a subring of R[Hom(Fr,SL2(R))].

Proof. Let f̃1, f̃2 ∈ R[Hom(Fr,SL2(R))]SL2(R). Then

g · (f̃1 − f̃2) = g · f̃1 − g · f̃2 = f̃1 − f̃2
Therefore f̃1 − f̃2 ∈ R[Hom(Fr,SL2(R))]SL2(R).

g · (f̃1f̃2) = (g · f̃1)(g · f̃2) = f̃1f̃2

So R[Hom(Fr,SL2(R))]SL2(R) is closed under multiplication. The associtavity and distributivity properties
follows from that of R[Hom(Fr,SL2(R))].

�
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Theorem 1.4. [1, Theorem 1.24] Let G be a reductive algebraic group, and X an affine G-variety. Then
the subalgebra C[X]G ⊂ C[X] (consisting of regular G-invariant functions) is finitely generated.

Let us consider the particular case whenR = C. Then SL2(C)r is a reductive group. SinceHom(Fr,SL2(R))
inherits the structure of affine variety from SL2(C)r, we can conclude by the above theorem that

R[Hom(Fr,SL2(C)]SL2(C) is finitely generated. Therefore there exists N ≥ 1 and generators f̃1, f̃2, ..., f̃N ∈
C[Hom(Fr, SL2(C)]SL2(C).

Define a function
B : C[t1, ..., tN ]→ C[Hom(Fr,SL2(R))]SL2(C)

ti 7→ f̃i

The function is clearly well defined and since it is defined on the generators, it can be extended to a ring
homomorphism. Clearly the map is onto. Therefore, by First Isomorphism Theorem,

C[t1, ..., tN ]/Ker(B) ∼= C[Hom(Fr,SL2(R))]SL2(C)

Definition 1.5. A commutative ring R with identity is called Noetherian iff every ideal I of R is finitely
generated.

Theorem 1.6 (Hilbert Basis Theorem). Let R be a Noetherian ring. Then R[x] is also Noetherian. By
induction, R[X1, ..., Xn] is Noetherian.

Since the only ideals of a field are {0} and itself, every field is Noetherian. Consequently C is Noetherian.
By Hilbert basis theorem, C[t1, ...., tN ] is Noetherian and hence the ideal Ker(B) is finitely generated.
Therefore there exists a generating set {χ1, ....χm} ⊆ Z[t1, ..., tN ] of Ker(B).

Definition 1.7. The SL2(C)-character variety of F2 is defined as

X(Fr,SL2(C)) = {v ∈ CN | χi(v) = 0 ∀ 1 ≤ i ≤M}.

1.3. Outer Automorphism Group of F2. Let F2 be the free group of rank 2, generated by {x1, x2}.
Then By [2], Out(F2) = 〈ι, τ, η〉 where

τ =

{
x1 → x2

x2 → x1

ι =

{
x1 → x−11

x2 → x2

η =

{
x1 → x1x2

x2 → x2

If tr(x1) = x, tr(x2) = y and tr(x1x2) = z, then the action of τ, ι, and η on X(F2,SL2(Fq) can be denoted
as the following:

ι̂((x, y, z)) = (x, y, xy − z)
τ̂((x, y, z)) = (y, x, z)

η̂((x, y, z) = (z, y, yz − x)

(1)

where x, y, z ∈ F3
q.

1.4. Arithmetic Ergodicity. Let G be a group, H be a subgroup of G, and V be a variety. Suppose
|G| ≤ ℵ0 , G 	 VFq

, for all q = pn, for prime p and H < G.

Definition 1.8. H 	 V is arithmetically ergodic (AE) if and only if for all W ⊂ V such that H 	
WFq

for all q, then either

lim
q→∞

|WFq |
|VFq |

= 1 or lim
q→∞

|VFq
−WFq

|
|VFq |

= 1.

Definition 1.9. Define the function

LH,V(q) := max
x∈VFq

{∣∣∣ ⋃
h∈H

Orbh(x)
∣∣∣}.
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Definition 1.10. LH,V(q) is said to be asymptotically equivalent to |VFq | when lim
q→∞

LH,V(q)
|VFq |

= 1 and is

denoted by LH,V(q) ∝ |VFq
|.

2. Results and Observations

Lemma 2.1. Let G be a group acting on a set X. Then for g, h ∈ G, the maximum orbit length of ghg−1,
denoted by Lghg−1 = Lh.

Proof. Let n be the orbit length of x ∈ X under the action of ghg−1. Then n is the smallest positive integer
such that (ghg−1)n(x) = x.

⇒ (ghg−1ghg−1 . . . ghg−1︸ ︷︷ ︸
n-times

)(x) = x

⇒ (ghng−1)(x) = x

⇒ (g−1ghng−1(x) = g−1(x)

⇒ hn(g−1(x)) = g−1(x)

It follows that n is the orbit length of g−1(x) under the action of h because if ∃m < n such that hm(g−1(x)) =
g−1(x), then ghm(g−1(x)) = x implying (ghg−1)m(x) = x which is a contradiction. Since the action of g over
X is a permutation of X, when x varies over X, g−1(x) varies over X as well. Therefore, Lghg−1 = Lh. �

Lemma 2.2. Let G be a group acting on a set X. Then for g ∈ G Lg−1 = Lg.

Proof. Let m and n be the orbit length of x under the action of g−1 and g respectively.
Then, gn(x) = x.

⇒ (g−1)n(x) = (g−1)n(gn(x)) = (g−1 . . . g−1)︸ ︷︷ ︸
n-times

(g . . . g)︸ ︷︷ ︸
n-times

(x) = x

Therefore, m ≤ n. Since (g−1)−1 = g, the argument is symmetric and hence n ≤ m.

⇒ m = n

�

The following are some observations which can be easily verified.

(1) ι̂2, τ̂2, ι̂τ̂ , η̂τ̂ and τ̂ η̂ are involutions.
(2) τ̂ ι̂ = ι̂τ̂
(3) 〈τ̂ , ι̂〉 is isomorphic to the Klein four group i.e., the action of the subgroup generated by η and τ is

abelian.

Proof: Since τ̂ , ι̂ are involutions, ι̂2 = e = τ̂2 where e is the identity element. Simple calculations
show that (ι̂τ̂)((x, y, z)) = (y, x, yx − z) = (τ̂ ι̂)((x, y, z)). Consequently, (τ̂ ι̂)2 = e = (ι̂τ̂)2. The
possible words of lengths three are ι̂τ̂ ι̂ = τ̂ and τ̂ ι̂τ̂ = ι̂ since every other word can be reduced to one
of the elements mentioned above. Therefore the group generated by 〈τ̂ , ι̂〉 = 〈ι̂, τ̂ |ι̂2 = τ̂2 = (ι̂τ̂)2 = e〉
,the representation of the Klein four group. �

(4) The following is the growth graph of ητ obtained by plotting the slope mp where mp denotes the
slope of the linear graph obtained when the maximum orbit length of first p primes is plotted against
p.
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3. Visualizing The Orbits

For each point in the affine space over Fq, a node in 3-dimensional space was created. Edges between
nodes were formed using a fixed outer-automorphism. The attached image shows the orbits in F3

5 under the
action of η. Similar visualizations can be generated for any transformation over an arbitrary field.

4. Future Goals

1. Prove or disprove the following conjectures.
(a) The growth of the maximum orbit of h is linear.
(b) ητ displays logarithmic growth.
(c) The action of the generators of Out(F2) is abelian upto isomorphism on the affine 3-space.

2. Look for similar results in Fpn .
3. Try to see if 〈τ, ι〉, 〈τ, η〉 or 〈ι, η〉 act arithmetically ergodic on κ−1(κ(x0, y0, z0)) ⊂ A33.
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