Orbits of Finite Field Character Varieties

Orton Babb and Cigole Thomas Faculty Adviser : Dr. Sean Lawton

MEGL , George Mason University

December 16, 2016

Orton Babb and Cigole ThomasFaculty Adviser : Dr. Sean Lawton Orbits of Finite Field Character Varieties MEGL , George Mason University

Contents

Orton Babb and Cigole ThomasFaculty Adviser : Dr. Sean Lawton

Orbits of Finite Field Character Varieties

MEGL , George Mason University

3

・ロト ・部ト ・ヨト ・ヨト

Problem

To understand the dynamics of the action of $Out(F_2)$ on the character variety $\mathfrak{X}(F_2, \operatorname{SL}_2(\mathbb{F}_q))$.

Character Variety

- Let $\mathsf{F}_r = \langle \gamma_1, ..., \gamma_r \rangle$ be the free group of rank r.
- Then $\operatorname{Hom}(\mathsf{F}_r, \operatorname{SL}_2(\mathbb{C})) \cong \operatorname{SL}_2(\mathbb{C})^r$ by the map $\rho \mapsto (\rho(\gamma_1), ..., \rho(\gamma_r))$
- $\operatorname{Hom}(\mathsf{F}_r,\operatorname{SL}_2(\mathbb{C}))\cong\operatorname{SL}_2(\mathbb{C})^r$ is an affine variety:

$$V = \{x_{11}^1, x_{12}^1, x_{21}^1, x_{22}^1, ..., x_{11}^r, x_{12}^r, x_{21}^r, x_{22}^r \in \mathbb{C}^{4r} | x_{11}^k x_{22}^k - x_{12}^k x_{21}^k - 1 = 0,$$

 $1 \le k \le r$

• Therefore it has a coordinate ring

$$\mathbb{C}[\operatorname{Hom}(\mathsf{F}_r,\operatorname{SL}(2,\mathbb{C}))]\cong\mathbb{C}[x_{ij}|1\leq i,j,k\leq r]/I$$

・ 同 ト ・ ヨ ト ・ ヨ ト

- $\operatorname{SL}_2(\mathbb{C})$ acts on $\operatorname{Hom}(\mathsf{F}_r,\operatorname{SL}_2(\mathbb{C}))$ by conjugation $A \cdot \rho = A\rho A^{-1}$.
- $\bullet \ {\rm SL}_2(\mathbb{C})$ acts on the coordinate ring given by

$$A \cdot (f + I) = f(AX_1A^{-1}, ..., AX_rA^{-1}) + I \text{ where } X_i = \begin{pmatrix} x_{11}^i & x_{12}^i \\ x_{21}^i & x_{22}^i \end{pmatrix}$$

- Since $\operatorname{SL}_2(\mathbb{C})$ is a reductive group, the set of invariants, $\mathbb{C}[\operatorname{Hom}(\mathsf{F}_r, \operatorname{SL}_2(\mathbb{C}))]^{\operatorname{SL}_2(\mathbb{C})} := \{f \in \mathbb{C}[\operatorname{Hom}(\mathsf{F}_r, \operatorname{SL}_2(\mathbb{C}))] | g \cdot f = f \ \forall g \in \operatorname{SL}_2(\mathbb{C})\}$ is finitely generated.
- Therefore, $\mathbb{C}[\operatorname{Hom}(\mathsf{F}_r, \operatorname{SL}_2(\mathbb{C}))]^{\operatorname{SL}_2(\mathbb{C})} \cong \mathbb{C}[t_1, ..., t_N]/\mathcal{J}$ for some ideal \mathcal{J} .

(4 間) トイヨト イヨト

- $\bullet\,$ Then ${\cal J}$ is finitely generated by Hilbert's Basis Theorem.
- Therefore there exists a generating set $\{\chi_1, ..., \chi_m\}$ of \mathcal{J} .
- The $SL_2(\mathbb{C})$ -character variety of F_r ,

 $\mathfrak{X}(\mathsf{F}_r,\mathrm{SL}_2(\mathbb{C})):=\{\mathbf{v}\in\mathbb{C}^N\mid\chi_i(\mathbf{v})=0\ \forall\ 1\leq i\leq M\}.$

 $\chi_1, ..., \chi_m$ is defined over the set of integers.

• We are interested in the finite field points of the above variety.

Outer Automorphisms

Inner Automorphism

For each group G, $g \in G$ induces an autmorphism, τ_g , given by $\tau_g(x) = gxg^{-1}$. Then τ_g is called an inner automorphism.

The set of all inner automorphisms, Inn(G) form a normal subgroup of the automorphism group, Aut(G) of G.

Outer Automorphism

The outer automorphism group Out(G) is the quotient Aut(G)/Inn(G).

Contents

Orton Babb and Cigole ThomasFaculty Adviser : Dr. Sean Lawton Orbits of Finite Field Character Varieties

MEGL , George Mason University

Problems

- Find the length of largest orbit under the action on the finite field character variety.
- Ind elements that act arithmetically ergodically.

• • = • • =

Arithmetic Ergodicity

Let G be a group, H be a subgroup of G, and \mathbb{V} be a variety. Suppose $|G| \leq \aleph_0$, $G \circ \mathbb{V}_{\mathbb{F}_q}$, for all $q = p^n$, for prime p and H < G.

Definition

 $H \circlearrowleft \mathbb{V}$ is arithmetically ergodic (AE) if and only if for all $\mathbb{W} \subset \mathbb{V}$ such that $H \circlearrowright \mathbb{W}_{\mathbb{F}_q}$ for all q, then either

$$\lim_{q\to\infty}\frac{|\mathbb{W}_{\mathbb{F}_q}|}{|\mathbb{V}_{\mathbb{F}_q}|}=1 \,\, \text{or} \,\, \lim_{q\to\infty}\frac{|\mathbb{V}_{\mathbb{F}_q}-\mathbb{W}_{\mathbb{F}_q}|}{|\mathbb{V}_{\mathbb{F}_q}|}=1.$$

Orton Babb and Cigole ThomasFaculty Adviser : Dr. Sean Lawton Orbits of Finite Field Character Varieties MEGL , George Mason University

On compact Orientable Surfaces

Conjecture 1: Let Σ be a compact orientable or non-orientable surface. Then $Out(\Sigma)$ acts AE on $\mathfrak{X}_{\Sigma}(G)$ for all reductive algebraic groups.

Length of Orbits

Conjecture 2:

- Selliptic/Parabolic elements correspond to constant growth
- Parabolic/reducible elements correspond to linear growth
- Seudo-anosov/hyperbolic elements correspond to *plogp* growth

Theorem (Bourgain, Gamburd and Sarnak)

Fix $\epsilon > 0$. Then for p large there is a Γ orbit C(p) in $X^*(p)$ for which

 $|X^*(p) \setminus C(p)| \le p\epsilon$

(note that $|X^*(p)| \sim p^2$), and any Γ orbit $\mathcal{D}(p)$ satisfies

 $|\mathcal{D}(p)| \gg (logp)^{\frac{1}{3}}$

- 4 伺 ト 4 ヨ ト 4 ヨ ト

Contents

awton MEGL, Ge

Orton Babb and Cigole ThomasFaculty Adviser : Dr. Sean Lawton Orbits of Finite Field Character Varieties MEGL , George Mason University

3

・ロト ・部ト ・ヨト ・ヨト

Orbits in \mathbb{F}_5^3 under the action of η

Orton Babb and Cigole ThomasFaculty Adviser : Dr. Sean Lawton Orbits of Finite Field Character Varieties

Orton Babb and Cigole ThomasFaculty Adviser : Dr. Sean Lawton Orbits of Finite Field Character Varieties

MEGL , George Mason University

Э

▲口 → ▲圖 → ▲ 国 → ▲ 国 →

Acknowledgement

We thank MEGL and GMU for providing the opportunity to carryout the research. We also thank Dr. Lawton for his advise and guidance.