

Statement of the Problem

In this project, we study the dynamics of the action of several monoids/groups of morphisms of F_r (e.g. injections, general automorphisms, outer automorphisms) on the character variety $Hom(F_r, SL(2, \mathbb{F}_q))//SL(2, \mathbb{F}_q)$ [1]. In particular, we characterize the orbits, provide criterion for determining periodic and preperiodic points, and compute the periods. We also work on visualizing the dynamics (orbits, functional graphs, etc.). We are concerned with $r \ge 1$ and \mathbb{F}_q is of odd order.

We have classified the when the points of $Hom(F_1, SL(2, \mathbb{F}_q)) / SL(2, \mathbb{F}_q)$ are periodic and preperiodic, and we have also begun to classify when the periods of the points of $Hom(F_2, SL(2, \mathbb{F}_q))//SL(2, \mathbb{F}_q)$.

Important Definitions

Definition (\mathbb{F}_{q})

A **finite field** is a finite set on which the four operations multiplication, addition, subtraction and division (excluding by zero) are defined, satisfying the rules of arithmetic known as the field axioms. We denote a finite field of order q by \mathbb{F}_q , and $\overline{\mathbb{F}}_p$ its algebraic closure.

Definition (*SL_n*)

The **special linear group of degree n** over a field \mathbb{F}_a is the set of $n \times n$ matrices with determinant 1 together with the operation of matrix multiplication. We denote this group by $SL_n(\mathbb{F}_q)$.

Definition (Dynamical System)

Let S be a set and let $F : S \rightarrow S$ be a map from S to itself. The iterate of F with itself n times is denoted

$$F^{(n)} = F \circ F \circ \cdots \circ F$$

. A point $P \in S$ is **periodic** if F(n)(P) = P for some n > 1. The point is **preperiodic** if F(k)(P) is periodic for some $k \geq 1$. The (forward) orbit of P is the set

$$O_F(P) = \left\{ P, F(P), F^{(2)}(P), F^{(3)}(P), \cdots \right\}.$$

Thus P is preperiodic if and only if its orbit $O_F(P)$ is finite.

Definition (Conjugation Equivalence)

We consider two matrices A and B to be equivalent if and only if, there exists a matrix g such that $A = gBg^{-1}$. This forms an equivalence class of matrices.

Periods on Arithmetic Moduli Spaces

Robert Argus, Patrick Brown, Jermain McDermott, Graduate Student Adviser Diaaeldin Taha, Faculty Adviser Dr. Sean Lawton

Mason Experimental Geometry Lab

Geometry Labs United Conference, August 28-30, 2015

The Future of the Problem

The next logical step in the problem, after we have classified the periods of $SL(2, \mathbb{F}_q)^{\times 2} // SL(2, \mathbb{F}_q)$ is to move onto the free group of 3 letters. Where we would examine the periods of $SL(2, \mathbb{F}_q)^{\times 3} / SL(2, \mathbb{F}_q)$. We know that the parametrization would look like.[3]

traces of the three matrices. Acknowledgments

Experimental Geometry Lab for making this opportunity possible Thanks to the University of Illinois at

Urbana-Champain for hosting

References

[1]. Cavazos, Samuel, and Sean Lawton. E-polynomial of SL 2 (\mathbb{C})-character varieties of free groups. International Journal of Mathematics 25.06 (2014): 1450058.

[2]. Manes, Michelle, and Bianca Thompson. *Periodic* points in towers of finite fields for polynomials associated to algebraic groups. arXiv preprint arXiv:1301.6158 (2013).

[3]. Fogg, N. Pytheas, and Valerie Berthe. *Substitutions in* dynamics, arithmetics and combinatorics. Vol. 1794. Springer Science and Business Media, 2002.

Wolfram Research, Inc., Mathematica, Version 10.0, Champaign, IL (2014).

 $(A, B, C) \mapsto$

 $Tr(C), Tr(BC), Tr(CA), Tr(AB), Tr(ABC)) \mapsto$

 $(x_1, x_2, x_3, y_1, y_2, y_3, z) = (X, Y, z)$

 $\Lambda(X, Y, z) = z^2 - p(X, Y)z + q(X, Y) = 0$ Where $\Lambda(X, Y, z) = 0$ will define a hyper-surface in \mathbb{F}_{q}^{7} and any point on this hyper-surface will be defined by the

Thanks for funding by, ISF and GEAR

Special Thanks for George Mason University, and Mason