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 Definitions  
◦ Manifold:  A topological space that is locally 

Euclidean 

◦ Immersion:  A differentiable function between 
manifolds such that its derivative map is 
everywhere one-to-one. 

◦ Embedding:  An injective, structure preserving 
map 

 Statement of Theorem 

◦ If 𝑋 is a compact 𝑚-manifold, then 𝑋 can be 
embedded in ℝ𝑁 for some positive 𝑁 



 Cover 𝑋 by finitely many open sets 𝑈1, … , 𝑈𝑛  
and choose embeddings 𝑔𝑖: 𝑈𝑖 → ℝ𝑚 

 Choose partition of unity 𝜙1, … , 𝜙𝑛 and define 
functions 𝑕𝑖: 𝑋 → ℝ𝑚 by 

𝑕𝑖 𝑥 =  
𝜙𝑖 𝑥 ∙ 𝑔𝑖 𝑥            𝑓𝑜𝑟 𝑥 ∈ 𝑈𝑖

0                               𝑓𝑜𝑟 𝑥 ∉ 𝑈𝑖
 

 Define 𝐹: 𝑋 → (ℝ × ⋯× ℝ × ℝ𝑚 × ⋯× ℝ𝑚) by 
𝐹 𝑥 = 𝜙1 𝑥 ,… , 𝜙𝑛 𝑥 , 𝑕1 𝑥 ,… , 𝑕𝑛 𝑥  

 We need to show that 𝐹 and its first derivative 
map are injective 



 Injective: 
◦ 𝐹 𝑥 = 𝐹 𝑦 ⇒ 𝜙𝑖 𝑥 = 𝜙𝑖 𝑦  and 𝑕𝑖 𝑥 = 𝑕𝑖 𝑦  ∀𝑖 
◦ So for some 𝑖, 𝜙𝑖 𝑥 = 𝜙𝑖 𝑦 > 0  
◦ And 𝑕𝑖 𝑥 = 𝜙𝑖 𝑥 ∙ 𝑔𝑖 𝑥 = 𝜙𝑖 𝑦 ∙ 𝑔𝑖 𝑦 = 𝑕𝑖 𝑦   
◦ ⇒ 𝑔𝑖 𝑥 = 𝑔𝑖 𝑦 ⇒ 𝑥 = 𝑦 since each 𝑔𝑖 is an 

embedding, and thus injective 

 Derivative Map Injective: 
◦ At any point 𝑥, the derivative map is given by 

◦ (𝐷𝜙1 𝑥 ,… , 𝐷𝜙𝑛 𝑥 , 𝐷𝜙1 𝑥 𝑔1 𝑥 + 𝜙1 𝑥 𝐷𝑔1 𝑥 ,… ,  

◦ 𝐷𝜙𝑛 𝑥 𝑔𝑛 𝑥 + 𝜙𝑛 𝑥 𝐷𝑔𝑛 𝑥   
◦ Which is not zero since each 𝑔𝑖 𝑥  is an embedding 
◦ Therefore, the derivative map of 𝐹 is injective 





 Definitions and Theorems 
◦ Tangent Bundle:  The set of all tangent vectors at 

the base point as the base point ranges over the 
entire manifold 

◦ Sard’s Theorem:  The set of critical values of a 
smooth function from a Euclidean space to a 
manifold has Lebesgue measure 0 

◦ Lebesgue Measure:  Extension of notions of 
length, area, and volume.   

 Statement of Theorem 
◦ Every 𝑘-dimensional compact manifold 𝑋 has a 

one-to-one immersion in ℝ2𝑘:1 



 The proof is by construction 

 Let:   
◦ 𝑀 > 2𝑘 + 1 be a natural number 
◦ 𝑓: 𝑋 → ℝ𝑀 be an injective immersion 

 The existence of such 𝑓 is guaranteed since any 
compact 𝑛-manifold can be embedded in ℝ𝑁 for 
sufficiently large 𝑁 

◦ 𝑕: 𝑋 × 𝑋 × ℝ → ℝ𝑀  be such that 𝑕 𝑥, 𝑦, 𝑡 = 𝑡 ∙
(𝑓 𝑥 − 𝑓 𝑦   

◦ 𝑔: 𝑇(𝑋 → ℝ𝑀  be such that 𝑔 𝑥, 𝑣 = 𝑑𝑓𝑥 𝑣  
where 𝑇(𝑋  is the tangent bundle of 𝑋 



 Since the dimensions of the domains of 𝑕 and 𝑔 are 
less than that of their codomains, all points in their 
image are critical 

 Sard’s Theorem implies that there exists 𝑎 ∈ ℝ𝑀 
such that 𝑎 is in the image of neither 𝑕 nor 𝑔 

 Define 𝜋 to be the projection from ℝ𝑀 to the 
orthogonal complement of 𝑎 

 If 𝜋 ∘ 𝑓 𝑥 = 𝜋 ∘ 𝑓 𝑦 , then 𝑓 𝑥 − 𝑓 𝑦 = 𝑡𝑎 for 
some scalar 𝑡 

 Proceed by contradiction:  Suppose 𝑥 ≠ 𝑦 

 Since 𝑓 is injective, 𝑡 ≠ 0 



 Then by definition of 𝑕, 𝑕 𝑥, 𝑦,
1

𝑡
= 𝑎  

 Contradiction, since 𝑎 is not supposed to be 
in the image   

 Therefore, 𝜋 ∘ 𝑓  is injective 

 Proof that 𝜋 ∘ 𝑓  is an immersion is also by 
contradiction 

 If we let 𝑣 be a nonzero vector in 𝑇𝑥(𝑋  such 
that d 𝜋 ∘ 𝑓 𝑥 𝑣 = 0, then since 𝜋 is linear, 
𝜋 ∘ 𝑑𝑓𝑥 = 0 



 So 𝑑𝑓𝑥 𝑣 = 𝑡𝑎 for some scalar 𝑡 
 Since 𝑓 is an immersion, 𝑡 is nonzero, which 

means 𝑔 𝑥,
1

𝑡
= 𝑎, contradicting the choice of 𝑎 

 Therefore, 𝜋 ∘ 𝑓  is an immersion 
 This proves the Weak Whitney Embedding 

Theorem 

 Note:   
◦ The theorem can be extended to non-compact 

manifolds and dimension 2𝑘 
◦ It follows, after scaling by 𝑏 > (𝑙𝑜𝑛𝑔𝑒𝑠𝑡 𝑙𝑒𝑛𝑔𝑡𝑕 , that the 

embedding can be made short 





 Definitions 
◦ Riemannian Manifold:  A manifold with positive definite metric 

tensor 
◦ Metric Tensor:  A function 𝑔 that takes a pair of tangent 

vectors 𝑣 and 𝑤 at a point and produces a real number scalar 
𝑔(𝑣, 𝑤  in a way that generalizes the dot product.  It is positive 
definite if 𝑔 𝑣, 𝑣 > 0,  ∀ 𝑣 > 0. 

◦ Short immersion:  An immersion where all distances measured 
along paths in a manifold are less than they should be.   
 Example: Immersion from flat torus to torus without 

perturbations  
◦ Isometric:  A function that is invariant with respect to distance 

 Statement of Theorem 
◦ If a compact Riemannian 𝑛-manifold has a short 𝐶∞ immersion 

in 𝐸𝑘 (𝑘-dimensional Euclidean Space) with 𝑘 ≥ 𝑛 + 2, then it 
also has an isometric immersion in 𝐸𝑘. 



 Begin with a “short” immersion 
 Use a sequence of successive corrections to 

“stretch out” distances on the manifold until it 
is isometric 

 In the process, find a way to keep the first 
derivatives of immersions under control, 
although they grow in a rate without bound.  

 Thus, the limit immersion is 𝐶1 not 𝐶2, which is 
expected by Gauss’ Theorema Egregrium 

 The general approach / strategy similar to 
sinusoidal fractal technique 



 Let: 

◦ 𝑀 be a 𝐶∞ manifold 

◦ 𝑔𝑖𝑗 be the intrinsic metric 

◦ 𝑥𝑖  be the coordinates in 𝑀 for 1 ≤ 𝑖 ≤ 𝑛 

◦ 𝑧𝛼  be the coordinates in the Euclidean space 

◦ The metric induced by the immersion be 𝑕𝑖𝑗 =

 
𝜕z𝛼

𝜕xi

𝜕z𝛼

𝜕xj𝛼  

 Begin with a short immersion, which means 

𝛿𝑖𝑗 = 𝑔𝑖𝑗 − 𝑕𝑖𝑗 is a always a positive definite matrix 

 The corrective process occurs in a sequence of 
“stages”, and each stage should make half the 
correction still needed at its beginning 

 



 Each stage modifies the immersion so the induced 
metric is closer to the intrinsic, but in a way that 
the immersion still remains short 

 Each stage is further divided into a number of 
“steps”, and a step affects only a local part of the 
immersion and increases the metric in only one 
direction 

 So for each neighborhood of the manifold, say 𝑁𝑝, 
construct a weighting function 𝜑𝑝 to distribute the 
correction load of each stage among the 
neighborhoods 

◦ Note:  the 𝜑𝑝’s should sum to one 



 In each neighborhood, we approximate the 

increase of the metric 
1

2
𝜑𝑝𝛿𝑖𝑗  by 

1

2
𝜑𝑝𝛽𝑖𝑗 =  𝑎𝜐

𝜕ψ𝜐

𝜕xi

𝜕ψ𝜐

𝜕xj𝜐  

◦ where 𝛽𝑖𝑗 is a positive definite tensor 

◦ xi’s are local parameters of 𝑁𝑝 
◦ 𝑎𝜐 ’s are non-negative 𝐶∞ functions 

◦ ψ𝜐 ’s are a finite number of linear functions of the xi 

 When performing a step for each neighborhood, we 
need two 𝐶∞ unit orthogonal vector fields normal 
to the immersion of the neighborhood, call them 𝜁𝛼 
and  𝜂𝛼 



 Now we construct  the perturbed immersion 

functions 𝑧 𝛼 = 𝑧𝛼 + 𝜁𝛼 𝑎𝜐

𝜆
cos 𝜆ψ𝜐 + 𝜂𝛼 𝑎𝜐

𝜆
sin 𝜆ψ𝜐 

◦ Where 𝜆 is a large positive constant used to control 
the accuracy 

 Nash proves the metric change  
𝜕𝑧 𝛼

𝜕xi

𝜕𝑧 𝛼

𝜕xj𝛼 −

 
𝜕z𝛼

𝜕xi

𝜕z𝛼

𝜕xj𝛼 ≈ 𝑎𝜐
𝜕ψ𝜐

𝜕xi

𝜕ψ𝜐

𝜕xj , the metric change he was 

trying to approximate, for sufficiently large  𝜆 (the 

error is 𝑂
1

𝜆
) 

 



 We need to know how much the first derivatives 
of the immersion functions change per step 

 Observe that 
𝜕𝑧 𝛼

𝜕𝑥𝑖 −
𝜕𝑧𝛼

𝜕𝑥𝑖 ≤ 2 𝑎𝜐
𝜕𝜓𝜐

𝜕𝑥𝑖 + 𝑂
1

𝜆
 

 Note that 
1

2
𝜑𝑝𝛽𝑖𝑗 =  𝑎𝜐

𝜕ψ𝜐

𝜕xi

2

𝜐 ≤  𝑎𝜐
𝜕𝜓𝜐

𝜕𝑥𝑖𝜐

2

 

 We now find a bound for number of nonzero 𝑎𝜐’s: 
◦ The positive definite symmetric matrices of rank 𝑛 form 

a 
1

2
𝑛 𝑛 + 1  dimensional cone 

◦ Obtain a covering of the cone by open simplicial 
neighborhoods such that each point is contained in at 
most 𝑊 simplices (uniformly star finite) 

◦ 𝑊 depends on only the dimension of the space 



 Finding bound for number of nonzero 𝑎𝜐’s 
(cont.): 
◦ Each point in the interior of a simplex can be 

represented as a weighted sum of its vertices 
◦ So let the sets of coefficients for each point be 
𝐶1,1 𝐶1,2 ⋯

⋮ ⋮ ⋮
𝐶𝑞,1 𝐶𝑞,2 ⋯

   , where the 𝐶𝑚,𝑛’s are the coefficients  

for a matrix in 𝑞 covering simplices as a weighted 
sum of vertex matrices 

◦ This implies that the number of nonzero 𝑎𝜐’s can 

not exceed 𝑛
1

2
𝑛 𝑛 + 1 𝑊 



 This means that 

 𝑎𝜐
𝜕𝜓𝜐

𝜕𝑥𝑖𝜐

2

≤ 𝑛
1

2
𝑛 𝑛 + 1 𝑊

1

2
𝜑𝑝𝛽𝑖𝑖

1/2
≤ 

𝐾
1

2
𝜑𝑝𝛽𝑖𝑖

1/2
≤  𝐾𝛽𝑖𝑖

1/2 

 𝐾 is a constant depending only on the 
dimension 𝑛 

 Therefore, 
𝜕𝑧 𝛼

𝜕𝑥𝑖 −
𝜕𝑧𝛼

𝜕𝑥𝑖 ≤ 2 𝐾𝛽𝑖𝑖

1

2 + 𝑂
1

𝜆
 



 Now we verify and consider questions of 
convergence 

 We first need to determine how large 𝜆 
needs to be at each step. 

 To do this, define  
◦ 𝐵1 to be the permissible error in the approximation 

of the metric change 

◦ 𝐵2 to be the permissible value of the error of the 

𝑂
1

𝜆
 parts of the first derivative change 

◦ 𝐵3 to be the bound on the change 𝑧 𝛼 − 𝑧𝛼 



 First consider the 𝐵1’s.  Recall  𝛿𝑖𝑗 = 𝑔𝑖𝑗 − 𝑕𝑖𝑗, which 
should be positive definite and continuous 

 So if we define the new induced metric to be 𝑕′𝑖𝑗  , then 
after every stage, 

 𝑕′𝑖𝑗 ≈ 𝑕𝑖𝑗 +
1

2
𝛿𝑖𝑗 = 𝑔𝑖𝑗 −

1

2
𝛿𝑖𝑗 + 𝑒𝑖𝑗  where 𝑒𝑖𝑗 is the error 

 We can also write 𝛿′𝑖𝑗 =
1

2
𝛿𝑖𝑗 − 𝑒𝑖𝑗.   

 Two things need to happen: we need 𝛿′𝑖𝑗 to be positive 
definite, and we need make the error small enough to 
ensure convergence 

 To do this, we require in each neighborhood 𝑁𝑝,  
𝑀𝑎𝑥 𝑠𝑖𝑧𝑒

𝑜𝑓 𝑒𝑖𝑗  𝑖𝑛 𝑁𝑝
≤

1

6

𝑀𝑖𝑛 𝑠𝑖𝑧𝑒
𝑜𝑓 𝛿𝑖𝑗  𝑖𝑛 𝑁𝑝

 



 But since max 𝑒𝑖𝑗 ≥ max 𝛿′𝑖𝑗 −
1

2
𝛿𝑖𝑗  and 

1

6
min 𝛿𝑖𝑗 ≤

1

6
max 𝛿𝑖𝑗 , we have 

𝑀𝑎𝑥 𝑠𝑖𝑧𝑒
𝑜𝑓 𝛿′𝑖𝑗  𝑖𝑛 𝑁𝑝

≤

2

3

𝑀𝑎𝑥 𝑠𝑖𝑧𝑒
𝑜𝑓 𝛿𝑖𝑗  𝑖𝑛 𝑁𝑝

, which will take care of metric 

convergence 
 To make sure 𝛿′𝑖𝑗 is positive definite, we find a 

sufficiently small 𝜀𝑝 in each 𝑁𝑝 and require 
𝑠𝑖𝑧𝑒 𝑜𝑓 𝑒𝑖𝑗 ≤ 𝜀𝑝 so that 𝛿′𝑖𝑗 =

1

2
𝛿𝑖𝑗 − 𝑒𝑖𝑗 is positive 

definite 
 Note that if the neighborhood 𝑁𝑝 intersects 𝜎 

neighborhoods including itself, divide the limits of 
the sizes of 𝑒𝑖𝑗 by 𝜎 
 



 These new bounds refer to the error due to the steps 
associated with the neighborhood, while the previous ones 
referred to the total error accumulated from all the steps 
associated with the neighborhood 

 So if we call 𝑑𝑖𝑗 from the steps associated with neighborhood 
𝑁𝑝, then define 𝜀𝑝

∗ such that 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑑𝑖𝑗 ≤ 𝜀𝑝
∗ 

 In the steps, the two sources of error are 
◦ The initial approximation of 𝛿𝑖𝑗 by 𝛽𝑖𝑗 
◦ The individual errors of the steps 

 So require that 𝛿𝑖𝑗 − 𝛽𝑖𝑗 ≤ 𝜀𝑝
∗, which means 

1

2
𝜑𝑝𝛿𝑖𝑗 −

1

2
𝜑𝑝𝛽𝑖𝑗 ≤

1

2
𝜀𝑝
∗  

 Then require that (if we let the second subscript indicate the 
indexes of the steps) 

◦ 𝐵11 ≤
1

4
𝜀𝑝
∗ 

◦ 𝐵12 ≤
1

8
𝜀𝑝
∗ 

◦ 𝐵13 ≤
1

16
𝜀𝑝
∗, etc. 



 This makes the total error due to the steps add up 
to no more than 

1

2
𝜀𝑝
∗ 

 This means that these two errors add up to no 
more than 𝜀𝑝

∗, which is what we aimed for 
 Convergence of the immersion  

◦ That 
2

3
 result ensures convergence of the metric but 

not the convergence of the immersions to a 𝐶1 
function 

◦ To ensure this, we require 𝐵3 of step 𝑟 of stage 𝑠 to be 
less than 2;𝑟;𝑠  (same for the 𝐵2’s) 

 Recall that we proved the change in the first 
derivatives have irreducible term 2 𝐾𝛽𝑖𝑖 where 𝐾 
depends only on the dimension 𝑛 



 This must converge for each 𝑖 and uniformly for 
each 𝑁𝑝. 

 To do this, require that 𝛽𝑖𝑗 approximates 𝛿𝑖𝑗 so 
closely that 

  
9

10
≤

max 𝑜𝑓 𝛽𝑖𝑗 𝑖𝑛 𝑁𝑝

max 𝑜𝑓 𝛿𝑖𝑗 𝑖𝑛 𝑁𝑝
≤

9

8
 

 So from the previous inequality on 𝛿𝑖𝑗, we can see 

that 
𝑀𝑎𝑥 𝑠𝑖𝑧𝑒

𝑜𝑓 𝛽′𝑖𝑗  𝑖𝑛 𝑁𝑝
≤

5

6

𝑀𝑎𝑥 𝑠𝑖𝑧𝑒
𝑜𝑓 𝛽𝑖𝑗  𝑖𝑛 𝑁𝑝

, which means  𝛽𝑖𝑗 

decreases geometrically per stage 

 This implies the first derivative change 2 𝐾𝛽𝑖𝑖 will 
be dominated by a geometric series with ratio 5/6 

 Therefore, the first derivatives converge uniformly 
in every neighborhood 
 



 This implies the immersions converge to a 𝐶1 
function, which means we have an isometric 
immersion 

 To sum it up 
◦ The process consists of a sequence of stages, 

beginning with a short 𝐶∞ short immersion 
◦ After each stage, we have a 𝐶∞ short immersion where 

the metric error is no more than 
2

3
 of what it was in the 

previous stage 
◦ Each stage is divided into steps, and the correction 

load in each neighborhood 𝑁𝑝 is spread according to 
the weighting functions 𝜑𝑝 

◦ Nash proves that this process leaves us with a 𝐶1 
isometric immersion 

 





 Statement of Theorem:  If a compact 𝐶1 
Riemannian manifold of dimension 𝑛 has a 𝐶1 
immersion in 𝐸𝑁 where 𝑁 ≥ 𝑛 + 1, then it has a 
𝐶1 isometric immersion in 𝐸𝑁 
◦ This is the same as Nash’s result but with 𝑛 + 1 

instead of 𝑛 + 2 
◦ This paper only applies for compact manifolds 

 The proof is similar to Nash’s proof except for 
a different step device 

 Note that both Nash’s 𝐶1 isometric immersion 
Theorem and the Nash-Kuiper Theorem can be 
extended to non-compact manifolds 
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 In the 1950’s Nash- Kuiper Theorem was proved 
 But did not provide a visualization  

 In the 70’s & 80’s, Gromov developed the convex integration 
technique, providing the tool for developing such visualization 

 Hevea Project: 
 Began in 2006 and completed in 2012 
 Collaboration among three different French Mathematical 

Institutions 
 Approach:  With each successive iteration, calculate a new 

surface grid to further reduce deviation from the desired 
isometric embedding 

 My Project 
 Approach:  Strictly recursive with a known generating 

function  
• Simpler and faster 

 Conducted at GMU Experimental Geometry Lab (MEGL) 



 Idea: 

 Inspired by Hevea Project’s result containing self-similarity 

• Strongly suggested a fractal structure 

 Instead of wrinkling sine waves just along a “single” (azimuth) 
direction, inject curves normal to the previous ones 

 

 

 

 

 

 

 Rotate / wrap a higher frequency sine wave onto the previous wave 

𝑊 = 𝑉 + 𝑹 ∙
0

𝐴 ∙ sin 𝜔 ∙ 𝑡  
 

𝑹 rotates the horizontal axis onto the tangent of the previous 
wave 
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 Proof of 𝐶1: 
◦ Bound the derivative and prove it converges 
◦ This implies the uniform convergence of the derivative, 

which implies continuity and thus 𝐶1 

 Proof of Injectivity 
◦ Bound the derivative below, and prove this bound is 

greater than 0 
◦ This implies the gradient matrix is full rank, and thus 

the first derivative map is injective 

◦ Also since we proved 𝐶1, this implies the first derivative 
map is injective, and thus the sine fractal is injective 

 Proof of Isometry 
◦ Integrate for small arc length 
◦ Match this to the length measured in the preimage 
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Sinusoidal Fractal Torus of 4 
Cycles and 3 Iterations 

Sinusoidal Fractal Torus 
of 4 Cycles and 6 

Iterations 

Sinusoidal Fractal Torus 
of 16 Cycles and 6 

Iterations 

Nash-Kuiper Sphere of 4 
Cycles and 3 Iterations 

Nash-Kuiper Sphere of 4 
Cycles and 6 Iterations 

Nash-Kuiper Sphere of 
16Cycles and 6 Iterations 


