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Abstract. Special words are sets of non-conjugate words that are trace equivalent. The
words we use are elements of the rank 2 free group. The trace of a word is calculated by
replacing each letter with a corresponding matrix from SLnC. Two words have are considered
trace equivalent if they have the same trace for all choices of SLnC matrices. Words are
considered 2-special if SL2C matrices are used, 3-special if SL3C matrices are used, and so
on. This research is to determine necessary conditions for words to be 3-special with the
goal of determining if 3-special words exist at all. It has been previously proven that a word
will never be 3-special with its inverse. We conjecture that a word will never be 3-special
with its reverse and alpha automorphism image, the mapping which takes each letter to its
inverse. We have proven this for most cases of the alpha automorphism and are working
on proving it for the rest of the alpha automorphism cases and all reverse cases using the
SL3 Fricke polynomial. We have developed a computer program that calculates a unique
SL3 Fricke polynomial for any word to assist in proving these conjectures. This research has
applications to algebraic geometry.

1. Introduction

In our research this summer we focused on searching the alpha locus and fixing the Fricke
polynomial program. After fixing the Fricke program, TrackPR, we focused our attention on
using the Fricke polynomial to try to prove the reverse pairs conjecture and to prove that the
words in the alpha locus are not 3-special. Due to a reduction forumla involving traces given
in Dr. Lawton’s paper, we were able to construct a unique polynomial for each word. We
looked for the commutator term in each Fricke polynomial because if the commutator exists,
then the word cannot be 3-special with its reverse since the commutator is not cyclically
equivalent to its reverse.

The purpose of studying the Fricke polynomial is to help us prove two conjectures, the
reverse pairs conjecture and the alpha pairs conjecture.

Conjecture 1.1 (Reverse Pairs). If a word, w, is not cyclically equivalent to its reverse, ←−w ,
then Tr(w) 6= Tr(←−w ).

We believe this can be proven by showing that the ninth invariant appears in a word’s
Fricke polynomial if and only if it is not cyclically equivalent to its reverse.
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Conjecture 1.2 (Alpha Pairs). If a word, w, is not cyclically equivalent to its alpha auto-
morphism image, α(w), where the alpha automorphism is the one that maps a → a−1 and
b→ b−1, then Tr(w) 6= Tr(α(w)).

We know this to be true outside the alpha symmetric locus [1]. We believe it can be proven
in the alpha symmetric locus by showing that the Fricke polynomial of a word is symmetric
with respect to the positive and negative versions of the first eight invariants if and only if
the word is cyclically equivalent to its reverse.

The Fricke polynomial in terms of 9 invariants for the SL3 trace of a word can be expressed
as the sum of two polynomials P1(T1, T−1, . . . , T4, T−4) and P2(T1, T−1, . . . , T4, T−4) which
are both in terms of 8 invariants where the second polynomial P2(T1, T−1, . . . , T4, T−4) is
the coefficient to the ninth invariant, T5. The invariants here are the same as in [3]. This
intrepretation of the Fricke polynomial is:

(1.1) Tr(w) = P1(T1, T−1, . . . , T4, T−4) + T5 × P2(T1, T−1, . . . , T4, T−4).

Expressing the Fricke polynomial as the sum of two polynomials is helpful in studying the
reverse pairs conjecture and the alpha pairs conjecture.

2. Fricke Polynomial for SL3

Since we are working with equivalence classes of words, we can work with the best rep-
resentation of the word, so each word given as input is then converted into a "goodword"
representation that is of the form "an1bm1 . . . ansbms". The algorithm then relies heavily on
the trace relation

(2.1) Tr(uxnv) = Tr(x) Tr(uxn−1v) + Tr(x−1) Tr(uxn−2v)− Tr(uxn−3v),

and the trace relation

(2.2) Tr(uxnv) = Tr(ux3+nv)− Tr(x) ∗ Tr(ux2+nv) + Tr(x−1) ∗ Tr(ux1+nv),

derived from the equation given to us by the Cayley Hamilton Theorem, that for SL3 matrices,

(2.3) X3 − Tr(X)X2 + Tr(X−1)X − I = 0.

Using these two equations, we are able to reduce any word’s trace into the 9 minimal invariants.
First the algorithm attacks all exponents of a word, by setting x = a or b (whichever is the
element raised to an exponent) and then setting that exponent equal to n. If the exponent is
positive, it uses (2.2). If it is negative, it uses (2.2). It does this until what remains is a word
of the form a±1b±1 . . . a±1b±1. Then it deals with very specific cases based off of the first four
letters of a word. These special cases are listed in Table 1.
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Table 1. These are the special cases that occur depending on the first four
letters of a word. The first three types of cases are simple and have the case
and its reduction on the table. The fourth type of case is more complicated so
only the terms that cause it are in the table.

Case 1 abab b−1ab−1 a−1ba−1b a−1b−1a−1b−1

Solution (ab)2 (ab−1)2 (a−1b)2 (a−1b−1)2

Case 2 abab−1 ab−1ab a−1ba−1b−1 a−1b−1a−1b

Solution (ab)2b−2 (ab−1)2b2 (a−1b)2b−2 (a−1b−1)2b2

Case 3 aba−1b ab−1a−1b−1 a−1bab a−1b−1ab−1

Solution a2(a−1b)2 a2(a−1b−1)2 a−2(ab)2 a−2(ab−1)2

Case 4 a−1bab−1 a−1b−1ab ab−1a−1b aba−1b−1

Those in the parenthesized expressions, except Case 4, are set to x, and we use equation
(2.1). In every case, it reduces the word into something smaller, or into something that can be
made smaller by using equation (2.1) on the exponents. The fourth case cannot be grouped
so easily as the 3 previous cases. It is handled by rotating the word into another goodword,
so the starting letters in Case 4 are not the starting letters in the word. If we can’t do this,
no matter how we much we rotate, then we know we have one of these words in Case 4 raised
to an exponent, and then we can handle it in the same way we handled letters raised to
exponents and reduce the word.

3. Reverse Pairs Conjecture

The Fricke polynomials of a word and its reverse are equal except for the terms containing
the T5 invariant. This is because the first 8 invariants are cyclically equivalent to their reverse
and therefore have the same trace, while the ninth invariant T5 is not cyclically equivalent to
its reverse. The reverse action on the Fricke polynomial can be intreprted as the following
action on Equation 1.1:
(3.1) Tr(←−w ) = P1(T1, T−1, . . . , T4, T−4) + (P − T5)× P2(T1, T−1, . . . , T4, T−4),
where P is defined in terms of the first 8 invariants [3, Page 11].

Theorem 3.1. The polynomial coefficient of the T5 term, P2,w, is equal to 0 if and only if
Tr(w) 6= Tr(←−w ).

Proof. Suppose Tr(w) = Tr(←−w ). Then,

P1(T1, T−1, . . . , T4, T−4) + T5 × P2(T1, T−1, . . . , T4, T−4) =
P1(T1, T−1, . . . , T4, T−4) + (P − T5)× P2(T1, T−1, . . . , T4, T−4).
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This equation can be simplified,

T5 × P2 = P × P2 − T5 × P2

T5 × P2 = P × P2

2

T5 = P

2
The last equation T5 = P/2 is false, thus, we have a contradiction. Therefore if the coefficient
to T5 is non-zero, then Tr(w) 6= Tr(←−w ).

If P2 = 0, their polynomials are equivalent under the reverse operation (equation 3.1) so
the word must have the same trace as its reverse. �

This result can directly be used to establish a sufficient condition in terms of the the SL3
Fricke polynomial of a word for the word to be SL2 special with its reverse.

Theorem 3.2. If P2 6= 0 in the SL3 Fricke polynomial of a word, w, then w is not cyclically
equivalent with its reverse, ←−w .

Proof. If P2 6= 0 then the word does not have the same SL3 trace as its reverse. This indicates
that it is not cyclically equivalent and not 3-special with its reverse.

Since the word is not cyclically equivalent to its reverse, the word is also 2-special with its
reverse. �

These results inspire a strategy to finally prove the reverse pairs conjecture. Proving that
if P2 = 0 then the word is cyclically equivalent to its reverse would prove the reverse pairs
conjecture. To prove this we are finding patters of reverse 2-special pairs and proving that all
words in the pattern have P2 6= 0.

4. Alpha Pairs Conjecture

The same interpretaion of the Fricke polynomial can be used to study the alpha pairs
conjecture, though with more difficulty since the action of the alpha automorphism causes
the values P1 and P2 to change while T5 stays the same. The alpha automorphism action on
a word affects its Fricke polynomial, and this effect can be interpreted as the following action
on Equation 1.1:

(4.1) Tr(←−w ) = P−1(T−1, T1, . . . , T−4, T4) + (P − T5)× P−2(T−1, T1, . . . , T−4, T4).

This action causes each of the first 8 invariants to switch with their negative version, while
the ninth invariant stays the same since the commutator is cyclically equivalent to its alpha
automorphism image.

Theorem 4.1. If P2 = 0 then P−1 6= P1.
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Proof. In SL3,
Tr(w) 6= Tr(w−1)

except in the case of the empty word [2]. Suppose P2 = 0 then
Tr(w) = Tr(←−w )

Tr(α(w)) = Tr(w−1)
Thus,

Tr(w) 6= Tr(α(w)),
and since P2 = 0, then P1 must not be equal to P−1 because of Equation 1.1. �

The equality of the Fricke polynomial and its negative versions is dependent on the trace
equivalence of a word and its alpha image.

Theorem 4.2. The Fricke polynomial for a word, w, is not symmetric with respect to the
negative versions of the first eight invariants if and only if Tr(w) 6= Tr(α(w)). This is
equivalent to P1 = P−1 and P2 = P−2 if and only if Tr(w) = Tr(α(w)).

Proof. The traces of a word w and its alpha image α(w) can be expressed with equations 1.1
and 4.1. If P1 6= P−1 or P2 6= P−2, using the trace equations 1.1 and 4.1, we get

P1 + T5 × P2 6= P−1 + T5 × P−2

Tr(w) 6= Tr(α(w)).
Similarly if P1 6= P−1 and P2 6= P−2, then we get

P1 + T5 × P2 = P−1 + T5 × P−2

Tr(w) = Tr(α(w)).
�

It is important to realize that this applies to trace equivalence. If we can prove that
P1 = P−1 and P2 = P−2 implies cyclic equivalence, then we get the alpha pairs conjecture. It
is sufficient to only prove that one of the equalities being false implies cyclic non equivalence
when P2 6= 0.
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