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1 Introduction

In the 1950's, Nash [10, 9] and Kuiper [6] proved the existence of C1 isometric
embeddings (global immersions [5]) of Riemannian manifolds into higher dimen-
sional Euclidean space; if (M, g) is a Riemannian manifold of dimension m and
f : M → Rn where n > m, then for any ε > 0, there is an embedding (or
immersion) fε : M → Rn of class C1 that is isometric and ε-close to f [1, 2].
For a mapping to be isometric, it must be distance invariant, i.e., the distance
between any two points in the pre-image must be the same as that in the image
[7]. For a mapping f : A 7→ B to be an embedding, its derivative matrix must
have rank equal to the dimension of A, which is equivalent to the criterion that
the derivative map of f be injective [3].

Notice that the surface of the embedding is only required to be continu-
ously �rst di�erentiable but not second di�erentiable. This is because Gauss'
famous Theorema Egregium [4] states that the Gaussian curvature of a surface
is conserved in isometric mappings. The Gaussian curvature of a hyperbolic
octagon is negative; thus, the Gaussian curvature of a 3D isometric embedding
of the hyperbolic octagon to the double torus must also be negative everywhere.
This seems to imply that an isometric embedding of a hyperbolic octagon in
3D Euclidean space does not exist. However, by bypassing the C2 criterion,
Nash and Kuiper prove [6, 10, 9] that an isometric embedding is feasible. If the
embedding is not C2, then the acceleration vector is not well de�ned, and thus
the Gaussian curvature cannot be calculated [11], hence no contradiction.

To construct an isometric embedding of a hyperbolic octagon to the double
torus, we found it necessary to �rst establish an embedding. Additionally, the
embedding must be conformal because all isometric maps are conformal. Once
such an embedding is achieved, we can then incorporate sinusoidal fractals to
satisfy the isometric requirement. Constructing a conformal embedding means
that for a speci�c parameterization of the double torus, we must determine the
corresponding parameterization of the hyperbolic octagon.
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2 Properties of the Regular Hyperbolic Octagon

Figure 1: Hyperbolic Octagon Properties

Figure 1 above is an illustration of a regular hyperbolic octagon. The interior
angles of regular hyperbolic octagons are 45o, and the edges are circular arcs.
Notice that unlike those in regular Euclidean octagons, the interior angles in
the regular hyperbolic octagon sum to 360o. This means that it is impossible
to construct a conformal embedding from the Euclidean octagon to the double
torus because angles would not be preserved in the map.

To �nd the radii of the circles used to construct the sides of the octagon, we
�rst de�ne the length of segment FA = 1. Then since ]FAC = 22.5o, we know
that the length of FC = sin(22.5). Furthermore, since ]FCD = 45, the radius

of circle D is DF = sin(22.5)
sin(45) .

We will now determine the length of the segment from the center of the

octagon to the center of circle D. Since the length of DF = sin(22.5)
sin(45) , the length

of DB = 2√
2
· sin(22.5)sin(45) . But also notice that DF = FB = AB, by the properties

of isosceles triangles. Therefore, the length of AD = sin(22.5)
sin(45) · (

√
2 + 1).
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3 Parameterization of the Double Torus

(a) Double Torus Tangent Lines (b) Double Torus Binormal Lines

Figure 2: Parameterization of Double Torus

The equation of the double torus is given by((
x2 + y2

)2 − x2 + y2
)2

+ z2 = h2

for h ∈ R. We chose to parameterize the double torus using the perpendic-
ular tangent and binormal lines, as shown in Figure 2.

Figure 3: Hyperbolic Octagon Double Torus Correspondence

Combining the information pictured in Figures 2 and 3, we notice that to
achieve a corresponding embedding on the octagon:

Requirements List

1. The �gridlines� on the hyperbolic octagon must be perpendicular.
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2. The �gridlines� on the hyperbolic octagon must intersect the black and
red edges perpendicularly.

3. The �gridlines� on the hyperbolic octagon must �ow from:

(a) The black edge to the other black edge (perpendicularly)

(b) The green edge to the other green edge (perpendicularly)

(c) The green edge to the yellow edge (perpendicularly)

(d) Similar constraints hold for the red and yellow edges

4 Attempt using Electric Potential

In electrodynamics, the electric �eld is equal to the negative gradient of the
voltage. This implies that the electric �eld lines are orthogonal to the constant
voltage (equipotential) lines, which would satisfy the conformal requirement for
the embedding (criterion 1 in the Requirements List). To satisfy criteria 2 and
3 from the Requirements List, we must construct a speci�c charge distribution.

We impose Dirichlet conditions of 1V on the red and black edges on the
left side of the hyperbolic octagon and −1V on the red and black edges on the
right side of the hyperbolic octagon shown in Figure 3. This would ensure that
the electric �eld streamlines satisfy requirement 2 in the Requirements List.
Furthermore, we impose Neumann conditions on the green and yellow sides,
which would guarantee that there is no normal force on the green and yellow
edges of the octagon. This implies the �eld streamlines would �ow tangentially
along the green and yellow sides, and the electric �eld streamlines emerging
from the black and red edges would not intersect the green and yellow edges of
the octagon.

We apply the Method of Moments [8] to calculate the charge distribution for
constant potential along the edges of the octagon. For the sides with Dirichlet
conditions, we have the matrix equation 1/r1,1 · · · 1/r1,n

...
. . .

...
1/r4n,1 · · · 1/r4n,n

 ·
 q1

...
qn

 =

 V1

...
V4n


where rm,k is the distance between the mth charge point to the kth test

point, qk is the charge of the kth test point, and V1, . . . , V4n are constants equal
to 1V or −1V. For the sides with Neumann conditions, we have the matrix
equation


−−→cen1 ·

−−−−→
char1,1/ (r1,1)

3 · · · −−→cenn ·
−−−−→
char1,n/ (r1,n)

3

...
. . .

...
−−→cen1 ·

−−−−−→
char4n,1/ (r4n,1)

3 · · · −−→cenn ·
−−−−−→
char4n,n/ (r4n,n)

3

·
 q1

...
qn

 =

 0
...
0



4



where −−→cenk is the vector from the center of the circle used to create the

current side of the octagon to the kth test point,
−−−−−→
charm,k is the vector from the

mth charge point to the kth test point, and qk is the charge of the kth test point.
We use the Least Squares method to solve the matrix equation.

(a) Electric Field Streamlines (b) Equipotential Lines

Figure 4: Equipotential and Electric Field Streamlines

Figure 4 above shows the graphs of the electric �eld streamlines (left) and
equipotential contour lines (right) after we imposed mixed boundary conditions.
We used the Matlab function streamline to plot the �eld �ow and the Matlab
function contour to plot the equipotential lines.

5 Problems and Conclusion

Although the octagon �gridlines� in Figure 4 satisfy the criteria outlined in the
Requirements List, there are still �aws in this construction. Observe that, in
Figure 2b, about half of the �gridlines� on the double torus would �ow from the
green edge shown in Figure 3 of the double torus to itself. However, notice in
Figure 4b that only about a quarter of the equipotential �gridlines� �ow from
the green edge to the other green edge. Similar observations hold for the yellow
edges. If the equipotential plot were to be modi�ed to �x these problems, the
�gridlines� would no longer be perpendicular, and thus the map would not be
conformal.
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