

ABSTRACT

- Our end goal is to determine the existance of 3-special words.
- We show that if two words have the same SL₃ trace ther they have the same exponents except in a special case we denote the alpha-symmetric locus.
- We have written a computer program to search the alpha-symmetric locus for 3-special words and a computer program to construct the SL₃ Fricke polynomia for words in order to determine the structure of their trace
- This research has applications in the fields of geometry and representation theory.

DEFINITIONS

- Word: A word is an element of the rank 2 free group, \mathbb{F}_2 For example, $a^2ba^{-3}b^{-5}$ is a word.
- Signature: The signature of a word is the ordered tuple unordered exponents in a word. For example, the signature of a²ba⁻³b⁻⁵ is {{2, -3}, {1, -5}}. A word is positive if every entry in its signature is positive.
- Trace Function: The trace function of a word,
 Tr : 𝔽₂ → ℂ is the value found by calculating the trace of the matrix found by replacing each letter in a word with a *SL_n* matrix an then multiplying them.
- **Cyclic Equivalence:** Two words are cyclically equivalen if one of them can be rotated to be identical to the other. For example, *aba* is cyclically equivalent to *aab*.
- n-Special: Two words are n-special if they have the sam trace when SL_n matrices are used and the words are no cyclically equivalent.

PREVIOUS WORK

- We have shown that the reverse, inverse, and reverse of inverse (alpha image) of a word are always 2-special, bu a word and its inverse will never be 3-special. [1]
- We have generated a data set of all positive 2-special words up to length 30. Statistics on the data set are belo Word Length 2-Specials Non-Reverses 3-Specials Length \leq 30 20, 299, 737 5, 747 0
- We have proven that all 3-special words must be 2-special.

SPECIAL WORDS IN FREE GROUPS

Patrick Bishop Mary Leskovec Tim Reid Sean Lawton, Faculty Adviser

Mason Experimental Geometry Lab

	SIGNATURE OF A
	If the sum of the each element in the signature is no
	signature then the words cannot be 3-special with e
n	OUTLINE OF PROOF.
	In order for words to be 3-special, they must have the same tr
	• Without loss of generality choose the identity matrix, $B = I(3)$
al ce.	 to replace <i>a</i>. This makes the trace of a word Tr(w) = Trace(A Trace equivalence of words in this case is xⁿ + yⁿ + zⁿ = x^m words, and the equation only has a solution for all x, y, z if n =
	• Using this fact it can be shown by induction that the
	 Since the amount of inverse letters must be the sar
	multiplied by $(Det^{-1/3})^n$ to make it an SL ₃ matrix, t
2.	
of	ALPHA SYMIN • From the above theorem we get by induction that the
	• We define the alpha image of a word as the reverse
2	roplaced with its inverse letter
	The fact that words with different signatures cannot
	its alpha image except in the case where the word
f	Mo have written a computer program to generate a
an	"alpha symmetric locus" to holp us determine if alph
	alpha symmetric locus to help us determine il alpi
nt	AUTOMORPHISMS AND
	If a word is special with the images of order two aut
	also applies to anti-automorphisms which are autor
ne	Order 2 (self inverse) automorphisms and anti-auto
ot	If the automorphism or anti-automorphism image of
	WORDS.
	• We believe that these facts can help prove that wor
f	automorphisms and anti-automorphisms image, red
' 1†	only one proven is inverse.
	FRICKE PC
	A Fricke polynomial is a polynomial that represents
אור	words when using SL_3 matrices. [2]
	One of the terms that appears in the Fricke polynor
	3-special with its reverse.
	 We have written a computer program to construct the
	that with a data set generated by it we will be able t
	J polynomial and cannot be special with their reverse

B-SPECIAL WORDS

t equal to the corresponding element in another word's ach other.	
ce for all choices of SL_3 matrices. to replace the letter <i>b</i> and the matrix $A = \begin{pmatrix} x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z \end{pmatrix}$ where $xyz = 1$ $a^n = x^n + y^n + z^n$ where <i>n</i> is the sum of the <i>a</i> part of the signature. $y^m + z^m$ where <i>n</i> and <i>m</i> are the sums of signatures of different <i>m</i> .	
signatures of 3-special words must be the same. e, if GL_3 matrices are used, each matrix can be erefore SL_3 special is equal to GL_3 special.	
ETRIC LOCUS signatures of 3-special words must be the same. of a word's inverse, or equivalently when each letter is	
be 3-special indicates that a word cannot be special with as the same amount of positive and inverse letters. 2-special words in this special case we denote the a word pairs can be 3-special at all.	
ANTI-AUTOMORPHISMS morphisms then it is special with their composition. This orphisms that also reverse the word. norphisms commute in composition in the free group. a set of words has the same specialness as the original	
s will never be 3-special with their order 2 ucing the number of 3-special candidates. So far the	
LYNOMIAL he trace of a word in terms of the trace of 9 shorter	
ial is $Tr(aba^{-1}b^{-1})$, the commutator, which is never	
e Fricke polynomial of each word, and we conjecture	

determine which words have the commutator in their

FINDINGS

3-special words must have the same signature.

A word and its alpha image cannot be 3-special except in the alpha symmetric locus.

Special using SL_n and GL_n matrices are equivalent for $n \ge 3$.

Automorphism and anti-automorphism images of sets of words preserve specialness.

If the image of some automorphisms are special then their composition is special.

The composition of order-two automorphisms and anti-automorphisms commute in the rank 2 free group.

CONJECTURES AND FUTURE WORK

Our main conjecture is that a word will never be 3-special with its reverse or alpha image. This would prove that the vast majority of words cannot be 3-special.

We will use the data set that will be created with the alpha-symmetric locus searching program to find patterns in special words in the locus.

We will use the SL_3 Fricke polynomial program to study the structure of the trace of reverse word pairs, and then use this information to prove a word will never be special with its reverse.

We wish to determine the existence of any 3-special words.

ACKNOWLEDGMENTS

e thank the Mason Experimental Geometry Lab for providing e opportunity to conduct this research, Dr. Sean Lawton for s guidance during the research. We thank Clément Guérin d Vishal Mummareddy for working with us during our evious research. We thank the National Science Foundation d George Mason University for funding our research.

Clément Guérin. Special Words. *Unpublished Notes*, 2015.

S. Lawton.

Generators, Relations and Symmetries in Pairs of 3x3 Unimodular Matrices. *ArXiv Mathematics e-prints*, January 2006.