Chaotic Motion of the Double Pendulum

MEGL 2016 - Mathematical Art and 3D Printing

Arsah Rahman

George Mason University: College of Science

December 16, 2016

Table of Contents

The Mathematics

- The Simple Pendulum
- The Double Pendulum

2 Construction of the Double Pendulum

- Inspiration for the Model
- Planning the Construction of the Model
- Implementing the plan

Results of the 3D Double Pendulum Model A Simulation in Mathematica

The Simple Pendulum

The Simple Pendulum The Double Pendulum

Equation for the motion of a simple pendulum (without damping and external driving):

$$\frac{d^2\theta}{dt^2} + \frac{g}{L}\sin\theta = 0$$

where θ = the angle from the downward vertical, g = acceleration due to gravity and L = the length of the pendulum.

The Simple Pendulum The Double Pendulum

The Simple Pendulum (Continued)

Nondimensionalization: let
$$\omega = \sqrt{\frac{g}{L}}$$
 and $\tau = \omega t$. Then

$$\frac{d^2\theta}{dt^2} + \sin\theta = 0$$

Coverting to a first order system of differential equations gives:

$$\frac{d\theta}{dt} = v$$
$$\frac{dv}{dt} = \frac{d^2\theta}{dt^2} = -\sin\theta$$

The Mathematics

Construction of the Double Pendulum Results of the 3D Double Pendulum Model

The Double Pendulum

Composed of a simple pendulum with another pendulum hanging from its bob Positions of the bobs:

$$x_1 = l_1 \sin \theta_1 \dots 1$$
$$y_1 = -l_1 \cos \theta_1 \dots 2$$
$$x_2 = l_1 \sin \theta_1 + l_2 \sin \theta_2 \dots 3$$

 $y_2 = -l_1 \cos \theta_1 - l_2 \cos \theta_2 \dots 4$

→ < Ξ → <</p>

The Simple Pendulum The Double Pendulum

The Simple Pendulum The Double Pendulum

The Double Pendulum (Continued)

Get the velocities by differentiating with respect to time:

$$\frac{dx_1}{dt} = l_1 \frac{d\theta_1}{dt} \cos \theta_1 \dots 5$$
$$\frac{dy_1}{dt} = l_1 \frac{d\theta_1}{dt} \sin \theta_1 \dots 6$$
$$\frac{dx_2}{dt} = l_1 \frac{d\theta_1}{dt} \cos \theta_1 + l_2 \frac{d\theta_2}{dt} \cos \theta_2 \dots 7$$
$$\frac{dy_2}{dt} = l_1 \frac{d\theta_1}{dt} \sin \theta_1 + l_2 \frac{d\theta_2}{dt} \sin \theta_2 \dots 8$$

A 3 3 4 4

The Simple Pendulum The Double Pendulum

The Double Pendulum (Continued)

Obtaining the Lagragian, L = T - V:

 $V = m_1 g y_1 + m_2 g y_2$

(the potential energy of m_1 and m_2)

$$T = 0.5m_1v_1^2 + 0.5m_2v_2^2,$$

A 3 b

The Simple Pendulum The Double Pendulum

The Double Pendulum (Continued)

$$\frac{d^2\theta_1}{dt^2} = \frac{-3g\sin\theta_1 - g\sin(\theta_1 - 2\theta_2) - 2\sin(\theta_1 - \theta_2)(v_2^2 - v_1^2\cos(\theta_1 - \theta_2))}{3 - \cos(2\theta_1 - 2\theta_2)}$$
$$\frac{d^2\theta_2}{dt^2} = \frac{2\sin(\theta_1 - \theta_2)[2v_1^2 + 2g\cos\theta_1 + v_2^2\cos(\theta_1 - \theta_2)]}{3 - \cos(2\theta_1 - 2\theta_2)}$$

where g = 9.81 and the length of both rods has been set to 1

The Simple Pendulum The Double Pendulum

The Double Pendulum (Continued)

Letting θ_1 and θ_2 be the angles of the two bobs with respect to the vertical and using the similar method as the simple pendulum, then the system of differential equations will be

$$\frac{d\theta_1}{dt} = v_1$$

$$\frac{dv_1}{dt} = \frac{-3g\sin\theta_1 - g\sin(\theta_1 - 2\theta_2) - 2\sin(\theta_1 - \theta_2)(v_2^2 - v_1^2\cos(\theta_1 - \theta_2))}{3 - \cos(2\theta_1 - 2\theta_2)}$$

$$\frac{d heta_2}{dt} = v_2$$

$$\frac{dv_2}{dt} = \frac{2\sin(\theta_1 - \theta_2)[2v_1^2 + 2g\cos\theta_1 + v_2^2\cos(\theta_1 - \theta_2)]}{3 - \cos(2\theta_1 - 2\theta_2)}$$

- 4 同 2 4 回 2 4 U

Inspiration for the Model Planning the Construction of the Model Implementing the plan

Inspiration for the Model

Figure: Double Pendulum Model by gmelenka from Thingiverse

Figure: Double Pendulum Model by stevenbtroy

Inspiration for the Model Planning the Construction of the Model Implementing the plan

Planning the Construction of the Model

Parts of the Double Pendulum Model:

- Vertical Stand with a Base
- Op Arm of the Double Pendulum
- 3 Lower Arm of the Double Pendulum
- Spacers to allow for free motion of the arms without any friction

Inspiration for the Model Planning the Construction of the Model Implementing the plan

Implementing the plan

- Software and Hardware used for the Double Pendulum Model
- First Model
- Redesign, hence some newer parts
- The Final Drafts on OpenScad and Makerware Examples

Inspiration for the Model Planning the Construction of the Model Implementing the plan

Software and Hardware used for the Double Pendulum Model

Software:

- Openscad for making the parts of the model in 3 dimensions
- Makerware for printing the parts
- Mathematica for making a simulation of the double pendulum's motion
- iPhone 7 Camera application's Slow Motion feature to capture the motion of the Double Pendulum Model in slow motion

Hardware:

- bearings
- various screws
- nuts and bolts

Inspiration for the Model Planning the Construction of the Model Implementing the plan

Redesign, hence, some new parts added

Newer parts added for the model:

- A Second part for making one top arm for the pendulum
- A block spacer
- A short lower arm

A 3 b

A Simulation in Mathematica

A Simulation in Mathematica

<ロ> <同> <同> < 同> < 同>

э