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Methods
First consider the one dimensional Allen-Cahn equation

∂tu = K∆u + u− u3.

The solution to this PDE is displayed below (Bueno-Orovio), whereN is the size
of discretization:

L = 2; N = 512; K = 0.01; α = 2;

Furthermore, the bifurcation diagram for the α = 2 case is seen below:

A portion of this research is devoted to understanding the changes in the bifurca-
tion diagram when the fractional laplacian is implemented. The equation for the
fractional Allen Cahn equations is

∂tu = K(−∆)α/2u + u− u3.

After discretizing this space, the “differentiation constant” was investigated as
changes were made to the fractional power. Let this differentiation constant be
κ = π2k2, where k = {1, 2, 3, ...}. Changing this requires raising it to a fractional
power

κα/2 = (π2k2)α/2 = παkα = (πk)α.

and the corresponding cosine sum is equal to

u(x) = a0 +

∞∑
n=1

nαan cos(πnx).

In doing so, a more particular adjustment can be looked at of the bifurcation
diagram.

Results and Conclusion
The solution of the Fractional Allen-Cahn equation is displayed here. N refers to
the discretization size and L is the length of the interval. The top left image left
is the 2 dimensional solution to the equation and the bottom left image is a cross
section of the solution.

L = 2; N = 512; K = 0.01; α = 1;

Below is the bifurcation diagram for the fractional Allen-Cahn equation when
α = 1.

Abstract
The Allen-Cahn equation is a partial differential equation that models the phase
changes of certain chemical elements. To determine the areas where a phase
change occurs, the stability and metastability of the equation needs to be in-
vestigated. Using MATLAB, initial plots of the bifurcation diagrams for the
Allen-Cahn equation were created, which gave a basic notion of the approximate
locations of the equilibrium points. Furthermore, AUTO, a computer software
designed to investigate bifurcations, helps determine the exact bifurcation points
in both 1D and 2D. Extending the model to 3D is the next step. From here, we
are able to gain a deeper insight into the Allen-Cahn equation and its stability.

Introduction
Allen-Cahn Equation

The Allen-Cahn equation is a reaction-diffusion equation that is used to model
phase changes in iron and other chemical alloys. A phase change like slush can
be modeled, and investigating the graph of the solutions shows the stability of
such a phase. Additionally, the fractional version of the Allen-Cahn equation is
more accurate in modeling certain processes. To implement the fractional space
component in the Allen-Cahn equation, the K∆ was changed to −K(−∆)α/2,
where K is a positive constant. If α = 2, then the equation is back to its normal
version without a fractional component

∂tu = K∆u + u− u3.

In this equation, u is a function of x and t, with x being contained in the finite
domain in dimension 1, 2, or 3. The Laplacian operator ∆ is equal to the diver-
gence of the gradient of u. We note that the function has homogeneous Neumann
boundary conditions, which means the derivative is equal to zero on the bound-
ary. To examine the solutions of this equation, many different numerical methods
had to be used. Using finite differences approach, a system of linear equations is
solved at each time step, where the left hand size of the matrix contains the frac-
tional component. However, many difficulties arise when the spatial dimension
is increased. Thus, spectral methods were used.

Spectral Methods

One way to solve partial differential equations is by using the Discrete Cosine
Transform (DCT). The DCT is used when the PDE has Neumann boundary con-
ditions, which set the derivative of the function equal to some value at the end-
points. The main idea is to write the solution in terms of a basis function that
is nonzero over the whole domain. The interpolating function using the DCT is
written as

u(x) = a0 +

∞∑
n=1

an cos(
πnx

L
)

where L is the length of the interval, and a0 to an are the Fourier coefficients.
Using the transform and it’s inverse allows one to formulate and later solve the
problem that is now only based on a series of cosine functions. Due to the global
ability of Spectral Methods, they often provide less error than a finite difference
approach.

Acknowledgments
We would like to thank Dr. Evelyn Sander and Dr. Thomas Wanner for their insight and support
for this project. Also, we thank the Mason Experimental Geometry Lab, and director of MEGL,
Dr. Sean Lawton. Finally, we thank the NSF.

Bueno-Orovio, Alfonso, David Kay, and Kevin Burrage. ”Fourier spectral methods for fractional-
in-space reaction-diffusion equations.” BIT Numerical Mathematics 54.4 (2014): 937-954.


