P₃ Cones of Rank 2 Lie Groups

Austin Alderete, Mark Tuben, Conor Nelson

Introduction What is a Ranl 2 Lie group? What is P₃?

Our Main Interest $s_p(4, C)$ G_2 Hilbert Basis for G_2 Moving Forward

P_3 Cones of Rank 2 Lie Groups

Austin Alderete, Mark Tuben, Conor Nelson

Mason Experimental Geometry Lab, GMU 2016

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

P_3 Cones of Rank 2 Lie Groups

P₃ Cones of Rank 2 Lie Groups

Austin Alderete, Mark Tuben, Conor Nelson

Introduction What is a Rank 2 Lie group? What is P₃?

Our Main Interest Sp(4, C) G2 Hilbert Basis fo G2 Moving Forward

1 Introduction

• What is a Rank 2 Lie group?

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

■ What is *P*₃?

2 Our Main Interest

- *Sp*(4, ℂ)
- G₂
- Hilbert Basis for G₂
- Moving Forward

Outline

P₃ Cones of Rank 2 Lie Groups

Austin Alderete, Mark Tuben, Conor Nelson

Introduction

What is a Ran 2 Lie group? What is P₃?

Our Main Interest $s_p(4, \mathbb{C})$ G_2 Hilbert Basis fo G_2 Moving Forward

1 Introduction

What is a Rank 2 Lie group?What is P₃?

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э.

Our Main Interest

- *Sp*(4, ℂ)
- G₂
- Hilbert Basis for G₂
- Moving Forward

What is a Rank 2 Lie group?

P₃ Cones of Rank 2 Lie Groups

Austin Alderete, Mark Tuben, Conor Nelson

Introduction

What is a Rank 2 Lie group? What is P₃?

Our Main Interest $s_p(4, \mathbb{C})$ G_2 Hilbert Basis for G_2 Moving Forward

Definition (Lie Group)

A *Lie group* is a finite dimensional smooth manifold that is also a group such that the group operations are smooth maps.

Definition (Lie Algebra)

A *Lie algebra* is a vector space along with a Lie bracket, [], that satisfies several properties.

Lie groups have a correspondence to Lie algebras. Given a Lie group G, we call the associated Lie algebra \mathfrak{g} .

What is a Rank 2 Lie group?

P₃ Cones of Rank 2 Lie Groups

Austin Alderete, Mark Tuben, Conor Nelson

Introduction

What is a Rank 2 Lie group? What is P₃?

Our Main Interest $s_p(4, \mathbb{C})$ G_2 Hilbert Basis for G_2 Moving Forward

Definition (Cartan sub-Lie algebra)

A Cartan sub-Lie algebra $\mathfrak{h} \subseteq \mathfrak{g}$ is a nilpotent sub-Lie algebra such that $\mathfrak{h} = N_{\mathfrak{g}} = \{X \in \mathfrak{g} : [X, \mathfrak{h}] \subset \mathfrak{h}\}.$

Definition (Rank)

The *rank* of a Lie algebra \mathfrak{g} is the dimension of any Cartan sub-Lie algebra of \mathfrak{g} .

What is P_3 ?

P₃ Cones of Rank 2 Lie Groups

Austin Alderete, Mark Tuben, Conor Nelson

Introduction What is a Rank 2 Lie group? What is P₃?

Our Main Interest $S_p(4, \mathbb{C})$ G_2 Hilbert Basis for G_2 Moving Forward $P_3(G)$ is a polyhedral cone with an integral map $\pi_{(3)}: P_3(G) \to \Delta^3$ where Δ is the Weyl chamber associated to G.

We have the property that for any λ, η, μ , dominant weights in Δ , the fiber over these weights $\pi_{(3)}^{-1}(\lambda, \eta, \mu)$ is a subcone whose integral points enumerate a basis for the invariant space

$$[V(\lambda)\otimes V(\eta)\otimes V(\mu)]^{G}$$

This is not completely understood by us. However, the inequalities for P_3 can be found. We limit ourselves, at the moment, to finding Hilbert bases for these cones via the known inequalities.

Outline

P₃ Cones of Rank 2 Lie Groups

Austin Alderete, Mark Tuben, Conor Nelson

Introduction What is a Rank 2 Lie group? What is P₃?

Our Main Interest

 $S_P(4, \mathbb{C})$ G_2 Hilbert Basis for G_2 Moving Forward

Introduction

• What is a Rank 2 Lie group?

• What is P_3 ?

2 Our Main Interest

- *Sp*(4, ℂ)
- G₂
- Hilbert Basis for G₂
- Moving Forward

Our Main Interest

P₃ Cones of Rank 2 Lie Groups

Austin Alderete, Mark Tuben, Conor Nelson

Introduction What is a Rank 2 Lie group? What is P₃?

Our Main Interest

 $S_P(4, \mathbb{C})$ G_2 Hilbert Basis for G_2 Moving Forward Determine $P_3(G)$ for G as each of the following simple rank 2 Lie groups

•
$$A_2 = SL_3(\mathbb{C})$$

•
$$C_2 = Sp_4(\mathbb{C})$$

•
$$D_2 = SL_2(\mathbb{C}) \times SL_2(\mathbb{C})$$

•
$$G_2 = \operatorname{Aut}(\mathbb{O})$$

We want to compute a Hilbert basis for $P_3(G)$ (recall that we have the inequalities).

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

$Sp(4, \mathbb{C})$

P₃ Cones of Rank 2 Lie Groups

Austin Alderete, Mark Tuben, Conor Nelson

Introduction What is a Rank 2 Lie group? What is P₃?

Our Main Interest

Sp(4, C) G2 Hilbert Basis for G2 Moving Forward

Definition (Symplectic Matrices)

M is a symplectic matrix if

 $M^T \Omega M = \Omega$

where

$$\Omega = \begin{bmatrix} 0 & I_n \\ -I_n & 0 \end{bmatrix}$$

Definition

 $Sp(4, \mathbb{C}) \subset SL_{2n}(\mathbb{C})$ is the group of $2n \times 2n$, symplectic, complex valued matrices. This is otherwise known as the symplectic group

$P_3(Sp(4,\mathbb{C}))$ Results

P₃ Cones of Rank 2 Lie Groups

Austin Alderete, Mark Tuben, Conor Nelson

Introduction What is a Rank 2 Lie group? What is P₃?

Our Main Interest *sp*(4, c) ^G2 Hilbert Basis fo ^G2 Moving Forwar Using the inequalities at hand, we managed to compute a Hilbert Basis for this cone. Upon doing so, it became clear that there were errors in the inequalities. Several attempts were made to correct this, all of them revealing more flaws with the system.

Conclusion: Reobtain the inequalities from scratch using Berenstein and Zelevinsky's work.

Octonions

P₃ Cones of Rank 2 Lie Groups

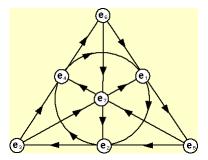
Austin Alderete, Mark Tuben, Conor Nelson

Introduction What is a Ran 2 Lie group? What is P₃?

Our Main Interest

Sp(4, C) G2 Hilbert Basis for G2 Moving Forward

$$G_2 \cong \operatorname{Aut}(\mathbb{O})$$



 \mathbb{O} , the octonions, are a normed division algebra over the real numbers. They are non-commutative and non-associative in their multiplication.

Automorphisms of the Octonions

P₃ Cones of Rank 2 Lie Groups

Austin Alderete, Mark Tuben, Conor Nelson

Introduction What is a Rank 2 Lie group? What is P₃?

Our Main Interest

Sp(4, C) G2 Hilbert Basis fo G2 Moving Forward An automorphism of the octonions is an invertible linear transformation ${\mathcal T}$ of ${\mathbb O}$ such that

$$T(xy) = T(x)T(y)$$

As usual, the set of automorphisms forms a group. In this case, it also allows for a structure that is a simply connected compact manifold of dimension 14.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Hilbert Basis for G_2

P₃ Cones of Rank 2 Lie Groups

Austin Alderete, Mark Tuben, Conor Nelson

Introduction What is a Ranl 2 Lie group? What is P₃?

Our Main Interest

G2 Hilbert Basis for G2 Moving Forward

much code

・ロト ・四ト ・ヨト ・ヨト 三日

such awful notwow

Hilbert Basis for G_2

P₃ Cones of Rank 2 Lie Groups

Austin Alderete, Mark Tuben, Conor Nelson

Introduction What is a Rank 2 Lie group? What is P₃?

Our Main Interest *Sp*(4, C)

G2 Hilbert Basis for G2 Moving Forward Due to the enormity of the system, the computer crashed long before the code terminated.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Conclusion: Investigate alternative methods for generated Hilbert Bases.

Next Steps

P₃ Cones of Rank 2 Lie Groups

Austin Alderete, Mark Tuben, Conor Nelson

Introduction What is a Rank 2 Lie group? What is P₃?

Our Main Interest $s_p(4, C)$ c_2 Hilbert Basis for c_2 Moving Forward

- A new computer for the lab has been obtained. Using this, we will once more attack $P_3(G_2)$.
- Reattempt *Sp*₄(ℂ).

In earnest, we do not know where we are headed as we carry a small candle and the cavern is dark. However, we are all excited to be working on this project and wish to delve deeper.