Largest Orbits on a GIT Quotient under Outer Automorphisms

Jermain McDermott

Spring 2016

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

identifications

- Let \mathbb{F}_q denote the finite field of order q
- ► SL(n, F_q) denotes the special linear group of n by n matrices over F_q
- ▶ Hom(F_r, SL(n, F_q)) is the set of group homomorphisms from the free group of rank r to SL(n, F_q).
- ► For any group G, define outer automorphisms as the quotient group Aut(G)/Inn(G), denote this by Out(G)

identifications

• Let $F_2 = \langle \mathbf{a}, \mathbf{b} \rangle$.

• We have that $Out(F_2) = < \iota, \tau, \nu >$ where

$$\iota(\mathbf{a}, \mathbf{b}) = (\mathbf{a}^{-1}, \mathbf{b})$$

$$\tau(\mathbf{a}, \mathbf{b}) = (\mathbf{b}, \mathbf{a})$$

$$\nu(\mathbf{a}, \mathbf{b}) = (\mathbf{a}^{-1}, \mathbf{a}\mathbf{b})$$
(1)

are involutions.

the action

There is a (right) action of Out(F_r) on the geometric invariant theory quotient Hom(F_r, SL(n, 𝔽_q))//SL(n, 𝔽_q) by [ℓ] · [𝔅] = [ℓ(𝔅)] for [𝔅] ∈ Out(F_r)

• What is $\operatorname{Hom}(F_r, \operatorname{SL}(n, \mathbb{F}_q)) / / \operatorname{SL}(n, \mathbb{F}_q)$?

the character variety

▶ Now, we define the set $\mathfrak{X}_{F_r}(\mathrm{SL}(n, \mathbb{F}_q)) = \mathrm{Hom}(F_r, \mathrm{SL}(n, \mathbb{F}_q)) / / \mathrm{SL}(n, \mathbb{F}_q)$

Definition

The set $\mathfrak{X}_{F_r}(\mathrm{SL}(n, \mathbb{F}_q))$ is defined as equivalence classes of homomorphisms in $\mathrm{Hom}(F_r, \mathrm{SL}(n, \mathbb{F}_q))$. The equivalence relation is $\rho \sim \gamma$ if there exists $A \in \mathrm{SL}(n, \overline{\mathbb{F}_q})$ (where $\overline{\mathbb{F}_q}$ is the algebraic closure of \mathbb{F}_q) such that $\rho = A \cdot \gamma = A\gamma A^{-1}$.

(日) (同) (三) (三) (三) (○) (○)

We will denote by \mathfrak{X} the set $\operatorname{Hom}(F_2, \operatorname{SL}(2, \mathbb{F}_q))$

finding the period

- We have classified when the points of Hom(F₁, SL(2, F_q))//SL(2, F_q) are periodic and preperiodic, and we have been working to classify the periods of the points of Hom(F₂, SL(2, F_q))//SL(2, F_q).
- For a fixed j ∈ Out(F₂), ℓ ∈ X, consider the forward orbit of ℓ under j: {j · ℓ, j² · ℓ, ..., jⁿ · ℓ, ...}.

Define the least period of ℓ under j as n such that n is the least positive integer such that jⁿ · ℓ = ℓ.

max period length

• Now define the map $\mathcal{P} : \operatorname{Out}(F_2) \times \mathfrak{X} \to \mathbb{N}$:

$$\mathcal{P}(j, \ell) =$$
the least period of ℓ under j (2)

- Our goal in our study is to find an explicit formula for the maximum orbit of X under a fixed automorphism j.
- Define the function

$$L_{j}(q) = \sup_{\ell \in \mathfrak{X}} \{ \mathcal{P}(j, \ell) \}$$
(3)

where the domain of L_j is the order of the finite field determining \mathfrak{X} , $|\mathbb{F}_q|$.

- Notice that since ι, τ, ν are involutions, we have that L_ι(q) = L_τ(q) = L_ν(q) = 2 for all q > 2.
- We first wanted to exhibit a function L_j(q) for each length two string of automorphisms, for example j = τν.

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

reversibility of outer automorphisms

The following theorem simplifies the task a bit:

Theorem

For any automorphisms $f, g \in \text{Out}(F_2)$, we have $L_{fg}(q) = L_{gf}(q)$ for all q.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Proof

- This proof shows that L_{gf}(q) cannot be strictly greater nor strictly less than L_{gf}(q), hence they are equal.
- Let f, g ∈ Out(F₂). Let p ∈ X such that the period of p under fg is n = L_{fg}(q), so (fg)ⁿ(p) = p

- Now, suppose that $k = L_{gf}(q)$ is not n
- ► Observe that g((fg)ⁿ(**p**)) = g(**p**), so that (gf)ⁿ(g(**p**)) = g(**p**).

Proof cont'd

- ► This implies that k = L_{gf}(q) is at least n, corresponding to the forward orbit length of g(p): otherwise, there was j < n such that (gf)^j(g(p)) = g(p).
- ► Then, by cancellation, we have that (fg)^j(**p**) = **p**, which implies that L_{fg}(q) < n, a contradiction (**p** was chosen to correspond to L_{fg}(q)).

Proof cont'd

- ▶ If $L_{gf}(q) = k > n$, then there is some $z \in \mathfrak{X}$ such that $(gf)^k(z) = z$.
- ► Then, by composing this with the function f, we have that (fg)^k(f(z)) = f(z), and there is no j < k such that (fg)^j(f(z))) = f(z), or else (gf)^j(z) = z.

► Thus L_{fg}(q) is at least k, which is greater than n, a contradiction.

Corollary

Corollary

For any automorphisms $f_1, f_2, ..., f_n \in Out(F_2)$, we have

$$L_{f_1 f_2 \dots f_{n-1} f_n}(q) = L_{f_n f_1 f_2 \dots f_{n-1}}(q)$$
(4)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Thus, for example, $L_{\tau\iota\nu}(q) = L_{\iota\nu\tau}(q) = L_{\nu\tau\iota}(q)$, reducing the total number of outer automorphisms we need to check