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INTRODUCTION

INTRODUCTION

I Any two or more words are special if they have the same trace and are not
cyclically equivalent

I The trace of a word is found by replacing a letter with an SLnC matrix and
calculating the trace of the product

I Over the summer and early fall we generated a set of positive special words

I We generated 20,299,737 SL2 special pairs, 5,747 trés (very) special sets, and
0 SL3 special words
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ANTI-AUTOMORPHISMS

ANTI-AUTOMORPHISMS

I An anti-automorphism is a mapping from a group to itself

I One to one and Onto

I It does not preserve the group structure meaning that for an
anti-automorphism f , f(ab) = f(b)f(a)

I Reverse is an anti-automorphism in the free group

I All free group anti-automorphisms are compositions of any automorphism and
reverse

I The anti-automorphism image of a special pair is special and the image of a
non-special pair is not special

We will only present our proof that anti-automporphisms preserve trace equivalence
because the proof that they preserve a pair not being conjugate is nearly the same
as for automorphisms. Also, the anti-automorphism image of non special words is
non special, and the proof is nearly the same.
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ANTI-AUTOMORPHISMS

ANTI-AUTOMORPHISMS PRESERVE TRACE-EQUIVALENCE

Reverse is the closest there is to an "identity" anti-automorphism so we will show
reverse preserves trace equivalence.

Suppose
Tr(w1(a, b)) = Tr(w2(a, b))

Tr(w1((a, b)
T)) = Tr(w2((a, b)

T))

Tr(w1(
←−−−
aT , bT) = Tr(w2(

←−−−
aT , bT))

Since trace must be equal for all SL matrices,

Tr(w1(
←−
a, b) = Tr(w2(

←−
a, b))
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SL(3,C) SPECIAL WORDS MUST BE SIGNATURE EQUIVALENT

THE SUM OF THE SIGNATURE IN SPECIAL WORDS IS EQUAL

I We define a signature of a word as the ordered tuple of unordered exponents in
a word. For example the signature of a2b2ab−1 is {{2, 1}, {2,−1}}.

I Suppose that sum of the exponents for one letter in a word w1 is α1 and in
another word, w2 is α2. If α1 6= α2, then the words will not have the same trace.

I Choose the matrix for the letter with different exponent sums to be the diagonal

SL3 matrix A =

−2 0 0
0 i/2 0
0 0 i

 and the other matrix to be the identity matrix.

I Since both matrices are diagonal, the trace relations will be Tr(w1) = Tr(Aα1)
and Tr(w2) = Tr(Aα2).

I It can be shown in 12 cases that Tr(w1) = Tr(w2) only if α1 = α2
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SL(3,C) SPECIAL WORDS MUST BE SIGNATURE EQUIVALENT

SPECIAL WORDS MUST HAVE THE SAME EXPONENTS

I Denote the exponents of a letter in the first word, w1, by αi and in the second
word, w2, by α̂i.

I From Horowitz [1] we know ∑n
i=1 |αi| = ∑n

i=1 |α̂i| where n is the amount of
exponents of the letter, and from the previous proof we have ∑n

i=1 αi = ∑n
i=1 α̂i

I We have proven the base case that if aα1bβ1aα2bβ2 is special with aα′1bβ′1aα′2bβ′2 ,
the exponents are equal.

I Strong Inductive Assumption: Suppose the all but the last exponents of a letter
in special words are equal.

I Then ∑n−1
i=1 αi = ∑n−1

i=1 α̂i and ∑n−1
i=1 αi + αn = ∑n−1

i=1 α̂i + α̂n

I Therefore αn = α̂n and the the exponents of a letter in special words must be
equal by induction.
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GENERATING SIGNATURE EQUIVALENT WORDS

SIGNATURES CODE

I Begins by taking into account two properties:

I The list of exponents must be of even length.
II Each exponent in the list must occur n times where n is divisible by 2.

I Uses the Compositions[] function in Mathematica to create a list of lists that
add up to the length given.

I For-loops through the list of lists eliminating:
I Cyclic equivalence
I Eliminates candidates which an α-automorphism can’t exist.

I Checks for SL2(C) speciality then checks for SL3(C) speciality.
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INFINITE FAMILIES OF NOT SL(3,C) SPECIAL WORDS

FAMILIES OF VERY SPECIAL BUT NOT SL3 SPECIAL WORDS

I Infinite pairs of words proven to have the same trace in SL(2,C)

I Currently attempting to prove one pair is not SL(3,C) special for all pairs

I Uses a contradiction proof dependent on proving our base cases of words are
not generated in any way by the trace of the commutator in its decomposition,
using the fact that
C[tr(A), tr(A−1), tr(B), tr(B−1), tr(AB), tr(A−1B−1), tr(AB−1), tr(A−1B)] is isomorphic
to C[x1, x2, x3, ..., x8]. If each word’s decomposition does not have the
commutator, then there can exist no relation between the generators because
it is then isomorphic to C[x1, x2, x3, ..., x8]. Then we have our contradiction.
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THE FUTURE

FUTURE GOALS

I Prove reverse pairs and the infinite families are not SL3 special to greatly
narrow the SL3 candidates

I Search the signature equivalent alpha pair locus for SL3 special words

I Determine the specialness of all reverse of the inverse pairs

I Determine if the matrices corresponding to special words are similar
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