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Statement of the Problem

I We study the dynamics of the action of several
monoids/groups of morphisms of Fr (e.g. injections, general
automorphisms, outer automorphisms) on the character
variety Hom(Fr ,SL(2,Fq))//SL(2,Fq).

I In particular, we characterize the orbits, provide criterion for
determining periodic and preperiodic points, and compute the
periods. We also work on visualizing the dynamics (orbits,
functional graphs, etc.). We are concerned with r ≥ 1 and Fq

of odd order.

I We have classified when the points of
Hom(F1, SL(2,Fq))//SL(2,Fq) are periodic and preperiodic,
and we have also begun to classify when the periods of the
points of Hom(F2, SL(2,Fq))//SL(2,Fq).



Dynamical System

Let S be a set and let F : S → S be a map from S to itself. The
iterate of F with itself n times is denoted

F (n) = F ◦ F ◦ · · · ◦ F

.
A point P ∈ S is periodic if F (n)(P) = P for some n > 1. The
point is preperiodic if F (k)(P) is periodic for some k ≥ 1.
The (forward) orbit of P is the set

OF (P) =
{
P,F (P),F (2)(P),F (3)(P), · · ·

}
.

Thus P is preperiodic if and only if its orbit OF (P) is finite.



The Setup

Define Out(Fr ) := Aut(Fr )/Inn(Fr ), where Aut(Fr ) and Inn(Fr )
are the automorphisms and inner automorphisms of the free group
of rank r, respectively. Consider Q := Hom(Fr , SLn(Fq))/SLn(Fq)
and let Out(Fr ) act on Q.

The Process

1. Fix [α] ∈ Out(Fr ) and [f ] ∈ Q.

2. Choose α
′ ∈ [α] and f

′ ∈ [f ].

3. Compute α(f
′
) := f

′ ◦ α′ .
4. Find [α

′
(f
′
)] ∈ Q and iterate.

This defines a dynamical system. As Fq is a finite field, it is
reasonable to ask whether there exist periodic orbits.



How to identify Hom(Fr , SL(2,Fq)),Out(Fr)

I Identify φ ∈ Hom(F2, SL(2,Fq)) with (φ(a), φ(b)) where
F2 = F ({a, b}).

I For larger r, identify φ ∈ Hom(Fr ,SL(2,Fq)) with
Hom(Fr , SL(2,Fq)) with (φ(a1), φ(a2), ..., φ(ar )) where
Fr = F ({a1, ..., ar}).

I To identify Out(F2), it has been shown that the maps
η : (a, b)→ (ab, b), τ : (a, b)→ (b, a), ι : (a, b)→ (a−1, b)
generate Out(F2).



Fr when r = 1

I Since F1 is cyclic, the only self-homomorphisms are a→ an for
n ∈ Z, so Aut(F1) = {id ,−id}, and Inn(F1) is the trivial
group

I This suggests viewing a different class of morphisms for r = 1,
in which case we chose the ”analogue”
Onj(F1) = Inj(F1)/Inn(F1), where Inj(F1) are the
monomorphisms of F1 to itself.

I Then for any n ≥ 1 consider the power map
Pn : SL(2,Fq)→ SL(2,Fq) defined by Pn([A]) = [An].



Fr where r = 1, cont’d

We had the following table for orders of elements in SL(2,Fq)
Conjugacy class type Representative Order

±I

[
±1 0
0 ±1

]
If I, 1; if -I, 2

Parabolic (α ∈ Fq , α = 1 or α 6= ω2) A =

[
±1 α∗
0 ±1

]
If tr(A)=2, char(Fq); if tr(A) = -2, 2char(Fq)

Diagonalizable over Fq
[
a 0

0 a−1

]
q−1

gcd(ā∗∗,q−1)

Diagonalizable over F
q2

[
c 0

0 c−1

]
q2−1

gcd(c̃∗∗∗,q2−1)
(will divide q + 1)

I When r=1, we showed that a matrix was strictly periodic if and only if it had order relatively prime to the
exponent n of the map φ : a→ an .

In this table:

I *α = 1 or is not a square in Fq .

I **ā represents φ(a) where φ : (Fq , ·)→ (Zq−1,+)

I ***c̃ represents γ(c) where γ : (F
q2 , ·)→ (Z

q2−1
,+) with φ, γ being isomorphisms.



Fr when r = 2

I The traces of the generators A,B,AB parameterize
Hom(F2, SL(2,Fq))/SL(2,Fq) as the affine space F3

q

I The character map Tr : Hom(F2,SL(2,Fq))/SL(2,Fq)→ F3
q

given by
[[A,B]] 7→ (trA, trB, tr(AB))

is an isomorphism.

I We substitute the original setting for the dynamical system
with this induced action.

I For r ≥ 2, all points are periodic. We turn to maximum orbit
length to further study the conjugacy classes.



Fr when r = 2, cont’d

The action of Out(F2) on SL(2,Fq) induces an equivariant action
on F3

q. We get the following table

(A,B) (trA, trB, trAB) (x , y , z)

ι (A−1,B) (trA−1, trB, trA−1B) (x , y , xy − z)
τ (B,A) (trB, trA, trBA) (y , x , z)
η (AB,B) (trAB, trB, trAB2) (z , y , yz − x)
η−1 (AB−1,B) (trAB−1, trB, trA) (xy − z , y , x)



Visualization r = 1

Graph of the 5th Chebyshev Polynomial of the first type
T5(x) = 16x5 − 20x3 + 5x acting on Z31.
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Visualization r = 2
η maps (x , y , z)→ (z , y , xy − z) in Z5

{{1}5, {1}5, {1}5}

{{1}5, {1}5, 0}

{{1}5, {1}5, {2}5}{{2}5, {1}5, {1}5}

{{1}5, {1}5, {4}5}

{{4}5, {1}5, {3}5}

{{1}5, {1}5, {3}5}

{{3}5, {1}5, {2}5}

{0, {1}5, {4}5}

{{1}5, {2}5, {1}5}

{{1}5, {2}5, {2}5}

{{2}5, {2}5, {3}5}

{{1}5, {2}5, {4}5}

{{4}5, {2}5, {2}5}

{{1}5, {2}5, {3}5}

{{3}5, {2}5, 0}

{{1}5, {2}5, 0}

{0, {2}5, {4}5}

{{1}5, {4}5, {1}5}

{{1}5, {4}5, {3}5}

{{1}5, {4}5, {2}5}

{{2}5, {4}5, {2}5}

{{1}5, {4}5, {4}5}

{{4}5, {4}5, 0}

{{3}5, {4}5

{{1}5, {4}5, 0}

{0, {4}5, {4}5}

{{1}5, {3}5, {1}5}

{{1}5, {3}5, {2}5}{{2}5, {3}5, 0}

{{1}5, {3}5, {4}5}{{4}5, {3}5, {1}5}

{{1}5, {3}5, {3}5} {{3}5, {3}5, {3}5}

{{1}5, {3}5, 0}

{0, {3}5, {4}5}

{{1}5, 0, {1}5} {{1}5, 0, {4}5}

{{1}5, 0, {2}5} {{2}5, 0, {4}5}

{{4}5, 0, {4}5}

{{1}5, 0, {3}5}

{{3}5, 0, {4}5}

{{1}5, 0, 0} {0, 0, {4}5}

{{2}5, {1}5, {2}5}

{{2}5, {1}5, 0}

{{2}5, {1}5, {4}5}{{4}5, {1}5, {2}5}

{{2}5, {1}5, {3}5}

{{3}5, {1}5, {1}5}

{0, {1}5, {3}5}

{{2}5, {2}5, {1}5}

{{2}5, {2}5, {2}5}

{{2}5, {2}5, {4}5}
{{4}5, {2}5, {1}5}

{{3}5, {2}5, {4}5}

{{2}5, {2}5, 0}

{0, {2}5, {3}5}

{{2}5, {4}5

{{2}5, {4}5, {4}5}

{{4}5, {4}5, {4}5}

{{2}5, {4}5, {3}5}

{{3}5, {4}5, 0}

{{2}5, {4}5, 0}

{0, {4}5, {3}5}

{{2}5, {3}5, {1}5}

{{2}5, {3}5, {2}5}

{{2}5, {3}5, {4}5}

{{4}5, {3}5, 0}

{{2}5, {3}5, {3}5}{{3}5, {3}5, {2}5}

{0, {3}5, {3}5}

{{2}5, 0, {1}5}

{{2}5, 0, {2}5} {{2}5, 0, {3}5}

{{4}5, 0, {3}5}

{{3}5, 0, {3}5}

{{2}5, 0, 0} {0, 0, {3}5}

{{4}5, {1}5, {1}5}

{{4}5, {1}5, {4}5}

{{4}5, {1}5, 0}

{{3}5, {1}5, {4}5}

{0, {1}5, {1}5}

{{4}5, {2}5, {4}5}

{{4}5, {2}5, {3}5}{{3}5, {2}5, {2}5}

{{4}5, {2}5, 0}

{0, {2}5, {1}5}

{{4}5, {4}5, {1}5}

{{4}5, {4}5

{{4}5, {4}5, {3}5}

{{3}5, {4}5, {3}5}

{0, {4}5, {

{{4}5, {3}5, {2}5}

{{4}5, {3}5, {4}5}

{{4}5, {3}5, {3}5}
{{3}5, {3}5, 0}

{0, {3}5, {1}5}

{{4}5, 0, {1}5}

{{4}5, 0, {2}5}

{{3}5, 0, {1}5}

{{4}5, 0, 0}{0, 0, {1}5}

{{3}5, {1}5, {3}5}

{{3}5, {1}5, 0}

{0, {1}5, {2}5}

{{3}5, {2}5, {1}5}

{{3}5, {2}5, {3}5}

{0, {2}5, {2}5}

{{3}5, {4}5, {2}5}

{{3}5, {4}5

{0, {4}5, {2

{{3}5, {3}5, {1}5}

{{3}5, {3}5, {4}5}

{0, {3}5, {2}5}

{{3}5, 0, {2}5}

{{3}5, 0, 0}{0, 0, {2}5}

{0, {1}5, 0}

{0, {2}5, 0}

{0, {4}5, 0}

{0, {3}5, 0}

{0, 0, 0}



Length of Maximum Orbits

The following plots depict the length of the maximum orbit versus
the prime p for a length two and length three word, respectively.



Period Data

p L(p) p L(p)

2 4 2 4

3 12 3 8

5 30 5 20

7 48 7 36

11 102 11 40

13 120 13 60

17 138 17 204

19 246 19 84

23 336 23 196

29 399 29 168

31 372 31 186



Questions

I Question: How many α’s in Out(F2) are needed to make⋃
α{ακ(xmax)|κ ≥ 0} = κ−1(κ(xmax)?

I Find a pair of matrices that realize the dip. Explore why the
form of those matrices gave us a dip in the first place.



Future Work

I Study maximum orbit lengths in order to learn a tight bound
on the largest period while varying primes.

I Aim to formulate a similar study varying degree of Fq over Fp

for a fixed prime p.


