Periods on Arithmetic Moduli Spaces

Jermain McDermott, Robert Argus

Fall 2015

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Acknowledgments

Dr. Sean Lawton

The Mason Experimental Geometry Lab

Outline

1. Overview of the problem.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- 2. The r = 1 case.
- 3. The r = 2 case.
- 4. Future work.

Statement of the Problem

- We study the dynamics of the action of several monoids/groups of morphisms of F_r (e.g. injections, general automorphisms, outer automorphisms) on the character variety Hom(F_r, SL(2, F_q))//SL(2, F_q).
- In particular, we characterize the orbits, provide criterion for determining periodic and preperiodic points, and compute the periods. We also work on visualizing the dynamics (orbits, functional graphs, etc.). We are concerned with r ≥ 1 and F_q of odd order.
- We have classified when the points of Hom(F₁, SL(2, 𝔽_q))//SL(2, 𝔽_q) are periodic and preperiodic, and we have also begun to classify when the periods of the points of Hom(F₂, SL(2, 𝔽_q))//SL(2, 𝔽_q).

Dynamical System

Let S be a set and let $F : S \to S$ be a map from S to itself. The iterate of F with itself n times is denoted

$$F^{(n)} = F \circ F \circ \cdots \circ F$$

A point $P \in S$ is **periodic** if F(n)(P) = P for some n > 1. The point is **preperiodic** if F(k)(P) is periodic for some $k \ge 1$. The (forward) orbit of P is the set

$$O_F(P) = \left\{ P, F(P), F^{(2)}(P), F^{(3)}(P), \cdots \right\}.$$

Thus P is preperiodic if and only if its orbit $O_F(P)$ is finite.

The Setup

Define $Out(F_r) := Aut(F_r)/Inn(F_r)$, where $Aut(F_r)$ and $Inn(F_r)$ are the automorphisms and inner automorphisms of the free group of rank r, respectively. Consider $Q := Hom(F_r, SL_n(\mathbb{F}_q))/SL_n(\mathbb{F}_q)$ and let $Out(F_r)$ act on Q.

The Process

- 1. Fix $[\alpha] \in Out(F_r)$ and $[f] \in Q$.
- 2. Choose $\alpha' \in [\alpha]$ and $f' \in [f]$.
- 3. Compute $\alpha(f') := f' \circ \alpha'$.
- 4. Find $[\alpha'(f')] \in Q$ and iterate.

This defines a dynamical system. As \mathbb{F}_q is a finite field, it is reasonable to ask whether there exist periodic orbits.

How to identify $Hom(F_r, SL(2, \mathbb{F}_q)), Out(F_r)$

- ▶ Identify $\phi \in Hom(F_2, SL(2, \mathbb{F}_q))$ with $(\phi(a), \phi(b))$ where $F_2 = F(\{a, b\})$.
- ▶ For larger r, identify $\phi \in Hom(F_r, SL(2, \mathbb{F}_q))$ with $Hom(F_r, SL(2, \mathbb{F}_q))$ with $(\phi(a_1), \phi(a_2), ..., \phi(a_r))$ where $F_r = F(\{a_1, ..., a_r\}).$
- ▶ To identify $Out(F_2)$, it has been shown that the maps $\eta : (a, b) \rightarrow (ab, b), \tau : (a, b) \rightarrow (b, a), \iota : (a, b) \rightarrow (a^{-1}, b)$ generate $Out(F_2)$.

F_r when r = 1

- Since F₁ is cyclic, the only self-homomorphisms are a → aⁿ for n ∈ Z, so Aut(F₁) = {id, -id}, and Inn(F₁) is the trivial group
- This suggests viewing a different class of morphisms for r = 1, in which case we chose the "analogue" Onj(F₁) = Inj(F₁)/Inn(F₁), where Inj(F₁) are the monomorphisms of F₁ to itself.

▶ Then for any $n \ge 1$ consider the power map $P_n : SL(2, \mathbb{F}_q) \rightarrow SL(2, \mathbb{F}_q)$ defined by $P_n([A]) = [A^n]$.

F_r where r = 1, cont'd

We had the following table for orders of elements in $SL(2, \mathbb{F}_q)$

Conjugacy class type	Representative	Order
±1	$\begin{bmatrix} \pm 1 & 0 \\ 0 & \pm 1 \end{bmatrix}$	lf I, 1; if -I, 2
Parabolic $(lpha \in \mathbb{F}_q, lpha = 1 ext{ or } lpha eq \omega^2)$	$A = \begin{bmatrix} \pm 1 & \alpha * \\ 0 & \pm 1 \end{bmatrix}$	If tr(A)=2, char(\mathbb{F}_q); if tr(A) = -2, 2char(\mathbb{F}_q)
Diagonalizable over \mathbb{F}_q	$\begin{bmatrix} a & 0 \\ 0 & a^{-1} \end{bmatrix}$	$rac{q-1}{\gcd(ar{\mathfrak{z}}**,q-1)}$
Diagonalizable over \mathbb{F}_{q^2}	$\begin{bmatrix} c & 0 \\ 0 & c^{-1} \end{bmatrix}$	$rac{q^2-1}{\gcd(ilde{c}***,q^2-1)}$ (will divide $q+1$)

When r=1, we showed that a matrix was strictly periodic if and only if it had order relatively prime to the exponent n of the map φ : a → aⁿ.

(日) (日) (日) (日) (日) (日) (日) (日)

In this table:

- * $\alpha = 1$ or is not a square in \mathbb{F}_q .
- ** \bar{a} represents $\phi(a)$ where $\phi: (\mathbb{F}_q, \cdot) \to (\mathbb{Z}_{q-1}, +)$
- *** \tilde{c} represents $\gamma(c)$ where $\gamma : (\mathbb{F}_{q^2}, \cdot) \to (\mathbb{Z}_{q^2-1}, +)$ with ϕ, γ being isomorphisms.

F_r when r = 2

- ► The traces of the generators A, B, AB parameterize Hom(F₂, SL(2, 𝔽_q))/SL(2, 𝔽_q) as the affine space 𝔽³_q
- ► The character map Tr : Hom(F₂, SL(2, F_q))/SL(2, F_q) → F³_q given by

$$[[A, B]] \mapsto (trA, trB, tr(AB))$$

is an isomorphism.

- We substitute the original setting for the dynamical system with this induced action.
- For r ≥ 2, all points are periodic. We turn to maximum orbit length to further study the conjugacy classes.

The action of $Out(F_2)$ on $SL(2, \mathbb{F}_q)$ induces an equivariant action on \mathbb{F}_q^3 . We get the following table

	(<i>A</i> , <i>B</i>)	(trA, trB, trAB)	(x, y, z)
ι	(A^{-1}, B)	$(trA^{-1}, trB, trA^{-1}B)$	(x, y, xy - z)
au	(B,A)	(trB, trA, trBA)	(y, x, z)
η	(AB, B)	$(trAB, trB, trAB^2)$	(z, y, yz - x)
η^{-1}	(AB^{-1},B)	$(trAB^{-1}, trB, trA)$	(xy-z,y,x)

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Visualization r = 1

Graph of the 5th Chebyshev Polynomial of the first type $T_5(x) = 16x^5 - 20x^3 + 5x$ acting on \mathbb{Z}_{31} .

Length of Maximum Orbits

The following plots depict the length of the maximum orbit versus the prime p for a length two and length three word, respectively.

Period Data

р	L(p)	р	L(p)
2	4	2	4
3	12	3	8
5	30	5	20
7	48	7	36
11	102	11	40
13	120	13	60
17	138	17	204
19	246	19	84
23	336	23	196
29	399	29	168
31	372	31	186

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = = の�?

Questions

- Question: How many α's in Out(F₂) are needed to make ⋃_α{α^κ(x_{max})|κ ≥ 0} = κ⁻¹(κ(x_{max})?
- Find a pair of matrices that realize the dip. Explore why the form of those matrices gave us a dip in the first place.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Future Work

- Study maximum orbit lengths in order to learn a tight bound on the largest period while varying primes.
- ► Aim to formulate a similar study varying degree of F_q over F_p for a fixed prime p.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <