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Introduction

Introduction / Objective

» Wrap a paper square onto a torus without tearing the paper or
distorting the distance (a.k.a.isometric embedding)
» Surface is everywhere continuously ditferentiable (C1-smooth)

% In the famousTheorema Egregium, Gauss proved that the Gaussian

curvature of a surface is conserved in isometric maps

+* Gaussian Curvature of a 3D flat torus must be zero = Impossible?
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Retrieved from: Flat Tori. Digital image. Hevea Project: The Folder. University of
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Timeline

» In the 1950’s Nash & Kuiper proved the existence of an isometric
embedding of a flat torus in 3D Euclidean space.
** Bypassed existence of continuous second derivative (C2)!
¢ But did not provide a visualization of such embedding
In the 70’s & 80’s, Gromov developed the convex integration technique,
providing the tool for developing such visualization
Hevea Project:
** Began in 2006 and completed in 2012
¢ Collaboration among three different French Mathematical Institutions
X Approach: With each successive iteration, calculate a new surface grid
to further reduce error from the desired isometric embedding
This Project:
X Approach: Strictly recursive with a known generating function
* Simpler and faster
** Conducted at George Mason University Experimental Geometry Lab
X Project currently funded by the NSF

» New Idea:

Approach

» Initial Idea:

“* Hevea Project program revealed self-
similarity, strongly suggested a fractal
structure

X8 Wrap a high frequency sine wave ** Wanted to imitate their solution

around a circle

“* Instead of Wrink]jng just along a
** Keep the frequency the same but “single” (azimuth) direction, inject
adjust amplitude until desired curve

arc length is achieved

< Unfortunately, the first derivative

fails to converge as the frequency

curves normal to the previous ones.

approaches inﬁnity

+ Achieved a curve of C° but not C1

Embedding a Flat Torus in Three Dimensional Euclidean Space

Construction

/
Sine Fractal Formulation

> Arriving at the Sine Fractal:

» Rotate / wrap a hlgher freq_uenC\ sine wave onto the previous wave

wererlosteol T

in(w - t)
“» R rotates the horizontal axis onto the tangent of the previous wave
+* Easier to represent with complex numbers: rotation = multiplication

W = V+ﬂ i-A-sin(w-t)

<+ The division by |V| makes analysis very difficult
«To mitigate this problem, we wrap V|- A-sin(w - t) instead
“*Thus, weendup with W =V + i - V-A-sin(w-t)

> Iterations: V,, =V, _; +i-V,, 1A, -sin(2w- Ny - P™-t)

—i-Zn-No-Pm-t)

: = g Jome o i2mNg-P™ -t
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Length Derivation (Pt. 1/2)

» Recall: Vi, =V 4 +i- V1
>V, =V, 1 +i-A,
+ 2+ Ny - P™-V,,_,-cos(2m- Ny - P™ - t)
+i-Vy, 1A, sin(2m- Ny P™-t)
» Proof that |V,,,_1| < 21+ Ny - P™ - |V,,,_1|:
@ Vil <2m-Ny(1+ P+ -+ P™ 1) - |V, 4]
= 27 Wy B L (W, | % 2% - Ny~ P14
<< 2m- N - Pm |Vm 1| (for P sufficiently large)

»  So for large P, V '—V _q +iA, -2m- Ny P™- Vm—1'
cos(2m - Ny - P™ - t)

A, -sin(2m-Ny-P™-t)

o

Length Derivation (Pt. 2/2)

> V| = Vim-1lY 1+ (4, - 27 - Np - P™)2 cos?(2m - Ny - P™t)

. f01|Vm|dt = fol\lle_1|2[1+(27t-No «P™- A)2cos?(2m- Ny P™-t)] dt

1
. 1
=f |Vm_1|j1+§-(Am-2n-No-Pm)2-[1+cos(2-2n-No-Pm-t)]dt
0

® Note that for large frequency, the cosine term will average to 0 upon integration.

> follvmldt = \/[1 1. (Zn-No-Zm. Am)z] ' follvm_ll dt  (as P - oo)

= \/[1 + (Zn-No'I;m- Am,)z] . T_—
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2D Proofs
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Proof: Derivative Properties

> Proof of C':
@ Recall:V,, =V, _;+i*Ay-2m Ny P™V,,_;-cos(2m-Ny-P™t)
Then |V, | < |[Vins |- V1 + @rNoP™AL)2] < |V, | - TIS=1  [1 + (2nNoP™A,,)?]

(Zﬂ‘No‘Pm‘Am)z

Note that we chose [ [sn_ \[ [1 -+ ] =k (meaning that it converges)

But that implies [ [;n—4 \/[1 + (2 Ny - P™- A,)?]also converges

o |Vl converges uniformly, and uniform convergence implies continuity, and thus G*
1
Note that the 2nd derivative is proportional to 27+ Ny * P™ - m 2. So, the accelerationis not

well definedas M — 00, and thus the Gauss Curvatureis also not well defined.

» Proof of Tangent Injective:

¢ Minimum ofleI occurswhen cos(21 - Ny« P™+t) =0
. lVlmm lvl l >0
e Since lVlmin > 0, the first derivative map is of full rank and therefore injective

3D Proofs

K

Convergence to Torus & Gradient Existence

Perturbed Equations / Wrapping Fractal onto Torus:
x(8,9) = |R(@. kg(8)) + #(6,k,) - cos(2m - 8) | - cos(2m - @)

v(8,9) = |R(¢, kg (8)) +7(6,k,) - cos(2m - 8)] - sin(27 - @)
z(6,¢) = 7(6,k,) -sin(2mw - 6)

211 (R+r) i kR(e) _ 2m(R+7) _ R+r

where: k 2nr 2 [R+7(8)-cos2m-8)] ~ R+#(8)-cos(2m-8)

Notice that R (go, k R (9)) and 7(6, k,) are sinusoidal fractals, which were constructed to
converge to Randr respecti\'ely = convergence to torus in amplitude

First Partial Derivatives:

dx _ d(R(@.kg(6))cos(2m@)) , B(i(B.k,)cos(2m6)) >
e o + 8 cos(2m - @)
8x _ B(R(@.kg(8))cos(2m-9))
do - dp

8y _ O((R(okg(8))sin(2m o)) | 8(F(B.k)cos(2m6)) . .
6= 30 + 70 sin(2m - @)
dy B((R(¢ kg(8))-sin(2m- :p))
axp do

0z _ 8(F(Bk,)sin(2n8)) | Bz _
a6 36 it

—2m-7(6,k,) - cos(2m - 6) - sin(27 - @)

2n-7(6,k,) - cos(2m - 6) - cos(2m - @)

ﬁ(q), kg (9)) and 7(0, k,-) are sinusoidal fractals , which were proved in previous slidesto

be of class C1 = gradjent exists

Proof: Convergence to Unit Circle

Recall that: V, = Vg + i Vipeq * Ay - SIn(2m - Ny - P™ - 1)
The minimum |V;, | occurs when sin(2m - Ny - P™ - t) = 0. Therefore, the

minimum |V I is just |V1|
Note: From previous slides, we have already proved that the upper bound of
Vi |= |V | max exists

Maximum V}, occurs when sin(2m - Ny - P™-t) = 1. Thus, we have
[Vinl < Vil + [V]max X1 A

. 1 2
= Vil + [V]max/ B(L) 'Zgl:lm\/;
< But,/f(L) 2 0asL - o

1
< Also, P >1 and —— <0 ( ) Summation must then converge.
27-Ng-P™M \l

Therefore, we then have |V,| < |V4| and |V}, | = |V4]
Therefore, |V, | = |V4]

Gradient Map One-to-One

dx dy 0z

a6 a0 a6
Gradient matrix: | 5. ay oz , each component is defined in previousslide

% o 96

Proved in previous slides that each row vector is nonzero

z
Suppose —— # 0, then the two rows are linearlyindependent and we are done

a
Suppose = 0, then in order for the two rows of the gradient matrix to be linearly
ox 0y
. , _|oe a6
independent, the rows of the matrix | 5. ay

%aqo

must be linearl}r independent

2z

So, by assuming — 38 = 0, the vector ( ) must then point towards the center of the tube

208’ 06
Suppose (%, %) points in the same direction, then since dp =0anddR # 0 3 — = 00

dx Ody

dx 0
Contradicting derivativesbounded = (— —-) cannot point in the same direction as (= y>

26’ 96

Thus, rows of gradient matrix are linearly independent = gradient map is one-to-one / injective
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Gain Distribution & Amplitude Derivation

J(1+B(L)) J(1+B(L)) J(1+B(L)) —k

® Matchjng the terms with the earlier length gain relation, we have:

l ﬁ L@ No- Pm Am>2] j B(L)
[ B5

1 2B(L)
ZnNo e \l m4

(1 Bl ))} converges iff Jim {Zm 1B(L)} = lim {B(L) ) 35— q}

¢ We can now determine the amphtudes usmg .

Now, lim {
L—oo
converges.

To achieve convergence to unit circle, we need ALL 4,, — 0 and thus (L) » 0 as L — .

For faster convergence (which is desired), we want a larger q.

»_ Thus, we set ¢ = 1 so that ¥7_,(m™%/2) “barely” diverges allowing for #(L) and 4,, - 0.

® Consider this product of L terms, with #(L) chosen to equate the result to the total gain (k):

Butif ¢ > 1, ¥77_,(m™?/2) converges and is finite, meaning (L) » 0 since we need k > 1.

~

Proof: Isometric (Pt. 1/2)

Want to show the length of any segment along the line is equal to the arc length of the
corresponding portion of the sinusoidal fractal curve

[ VAT

To‘l‘S

. 1
lim \A njl +§-(A,,,-2n-1v0 - Pm)2 . [1 4 cos(4m - Ny - Pm - t)] dt
0 m=1

L—co

(Am-2m-No-P™)? _ B(L)

Note that |Vl| = 27 and 3 p— And choose an H such that 41 - N, - P? > i

i T0+S|V Idt _

21

L—oo

lim f7€°+eﬂm=1\ll +%-[1+cos(4n-No-Pm-t)] -TI& =H+1\l1 +%-[1+cos(4n-No-Pm-t)]dt

Note that ng:l J(l + B(L)) [1 + cos(4m - Ny - P™ - t)] is of order
O{B(L) - [1+ cos(4m - Ny - P™ - t)] - [In(H) +y — 1] + 1}

AsL — o0, B(L) > 0. Thus, [T%._ 1\/(1+@) [1+ cos(4m - Ny -Pm-t)] - 1

3D Isometric

¢ Flat torus mapping:
de

[ |

dR can be expressed as a linear combination of d6 and d¢
Already proved isometry between df and df' and d¢@ and d¢’ directions
Also, d@" and d¢' are perpendicular and so are d6 and d¢

Then we can construct a unitary rotation matrix which maps do to dO' and

de tode'
This implies the 3D case is isometric

* Globe Image Retrieved From: Petzold, Charles. Latitude and Longitude. Digital
image. PETZOLD BOOK BLOG. N.p., July-Aug. 2007. Web. 22 Mar. 2016.

Proof: Isometric (Pt. 2/2)

1 To+¢
2t Ty

lim f72°+£]_[m_H+1J1 e [1 4+ cos(4m - Ny - P™- t)]dt

L—oco

|Voo|dt =

Chose H to be large enough so that the cos (4m - Ny - P™ - t) terms will average

out to be arbitrarily small upon integration.

1 To+&;, s s e L B(L)
Thus, ——- TOO [Veo|dt = Ill_)rr.ion=H+1 L= ==

g Lhm ) L l1+@—£ gain

T
Therefore, the sectional arc length O+S|V |dt =2m- - gain
Recall that Al = 2w - gain- At = 2m- gain- ¢

Matching, sectional arc length = Al (independent of T), and thus isometric
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Program Flow Diagram
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i2nf, Ryet2mfmt A, - etizmNoP™
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Operations Coefficient

coef 11 € coef,, *  frequyy € freq,

o

Sinusoidal Fractal Torus of 4 Cycles
and 3 Iterations

Sinusoidal Fractal Torus of 4
Cycles and 6 Iterations

Sinusoidal Fractal Torus of 16
Cycles and 6 Iterations
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Nash-Kuiper Sphere of 4 Cycles and Nash-Kuiper Sphere of 4 Cycles and

Nash-Kuiper Sphere of 16Cycles
3 Iterations 6 Iterations

and 6 Iterations
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Future Work + Conclusion

» Conclusion:

“»Sinusoidal fractals satisfy criteria for 2D isometric embeddings
“»Sinusoidal fractal tori satisfy criteria for 3D isometric

embeddings

“*Sinusoidal fractal spheres satisfy criteria for 3D isometric
embeddings (similar proofs)
“*Sinusoidal fractal is generated from strictly recursion
® Simplicity allows for easy extension to other surfaces
® Computationally efficient
» Future Work:

“»Extend sinusoidal fractals to double torus using hyperbolic
geometry




