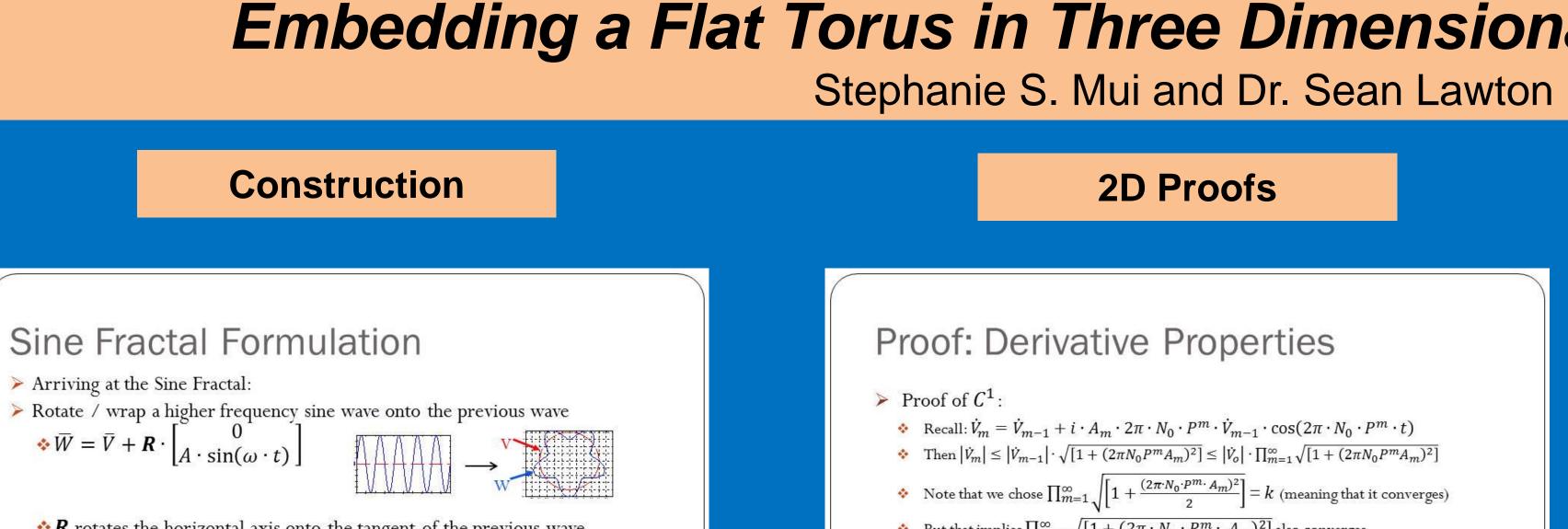


Introduction

\mathbf{R} rotates the horizontal axis onto the tangent of the previous wave Introduction / Objective \bullet Easier to represent with complex numbers: rotation \rightarrow multiplication $\mathbf{O} W = V + \frac{V}{1 + i} \cdot i \cdot A \cdot \sin(\omega \cdot t)$ \bullet The division by $|\dot{V}|$ makes analysis very difficult > Wrap a paper square onto a torus without tearing the paper or ***** To mitigate this problem, we wrap $|\dot{V}| \cdot A \cdot \sin(\omega \cdot t)$ instead distorting the distance (a.k.a. isometric embedding) * Thus, we end up with $W = V + i \cdot \dot{V} \cdot A \cdot \sin(\omega \cdot t)$ > Iterations: $V_m = V_{m-1} + i \cdot \dot{V}_{m-1} \cdot A_m \cdot \sin(2\pi \cdot N_0 \cdot P^m \cdot t)$ > Surface is everywhere continuously differentiable (C1-smooth) $= V_{m-1} + \dot{V}_{m-1} \cdot \frac{A_m}{2} \cdot (e^{i \cdot 2\pi \cdot N_0 \cdot P^m \cdot t} - e^{-i \cdot 2\pi \cdot N_0 \cdot P^m \cdot t})$ ◆ In the famous Theorema Egregium, Gauss proved that the Gaussian curvature of a surface is conserved in isometric maps Solution \diamond Gaussian Curvature of a 3D flat torus must be zero \Rightarrow Impossible? Length Derivation (Pt. 1/2) > Recall: $V_m = V_{m-1} + i \cdot \dot{V}_{m-1} \cdot A_m \cdot \sin(2\pi \cdot N_0 \cdot P^m \cdot t)$ $\succ \dot{V}_m = \dot{V}_{m-1} + i \cdot A_m$ $\cdot 2\pi \cdot N_0 \cdot P^m \cdot \dot{V}_{m-1} \cdot \cos(2\pi \cdot N_0 \cdot P^m \cdot t)$ Retrieved from: Flat Tori. Digital image. Hevea Project: The Folder. University o Retrieved from: Something Slinky 2 Digital image. Flickr. Yahoo!, 24 Apr. 2012. Web. 14 Feb. 2016. $+i\cdot \ddot{V}_{m-1}\cdot A_m\cdot \sin(2\pi\cdot N_0\cdot P^m\cdot t)$ Lyon, n.d. Web. 14 Feb. 2016. > Proof that $|\ddot{V}_{m-1}| \ll 2\pi \cdot N_0 \cdot P^m \cdot |\dot{V}_{m-1}|$: ¹ *All other unnoted figures and images on this poster were generated by the researcher. $◊ | \ddot{V}_{m-1} | < 2π ⋅ N_0 (1 + P + \dots + P^{m-1}) ⋅ | \dot{V}_{m-1} |$ $= 2\pi \cdot N_0 \cdot \frac{P^{m-1}}{P-1} \cdot |\dot{V}_{m-1}| \approx 2\pi \cdot N_0 \cdot P^{m-1} \cdot |\dot{V}_{m-1}|$ $<< 2\pi \cdot N_0 \cdot P^m \cdot |\dot{V}_{m-1}|$ (for *P* sufficiently large) So for large P, $\dot{V}_m = \dot{V}_{m-1} + i A_m \cdot 2\pi \cdot N_0 \cdot P^m \cdot \dot{V}_{m-1}$. Timeline $\cos(2\pi \cdot N_0 \cdot P^m \cdot t)$ > In the 1950's Nash & Kuiper proved the existence of an isometric embedding of a flat torus in 3D Euclidean space. * Bypassed existence of continuous second derivative (C2)! 🚸 But did not provide a visualization of such embedding > In the 70's & 80's, Gromov developed the convex integration technique, providing the tool for developing such visualization Length Derivation (Pt. 2/2) > Hevea Project: Began in 2006 and completed in 2012 $\left| \dot{V}_m \right| = \left| \dot{V}_{m-1} \right| \sqrt{1 + (A_m \cdot 2\pi \cdot N_0 \cdot P^m)^2 \cos^2(2\pi \cdot N_0 \cdot P^m t)}$ * Collaboration among three different French Mathematical Institutions * Approach: With each successive iteration, calculate a new surface grid • $\int_0^1 |\dot{V}_m| dt = \int_0^1 \sqrt{|\dot{V}_{m-1}|^2} [1 + (2\pi \cdot N_0 \cdot P^m \cdot A_m)^2 \cos^2(2\pi \cdot N_0 \cdot P^m \cdot t)] dt$ to further reduce error from the desired isometric embedding > This Project: * Approach: Strictly recursive with a known generating function $= \int_{-1}^{1} |\dot{V}_{m-1}| \left| 1 + \frac{1}{2} \cdot (A_m \cdot 2\pi \cdot N_0 \cdot P^m)^2 \cdot [1 + \cos(2 \cdot 2\pi \cdot N_0 \cdot P^m \cdot t)] dt \right|$ • Simpler and faster • Note that for large frequency, the cosine term will average to 0 upon integration. * Conducted at George Mason University Experimental Geometry Lab Project currently funded by the NSF $> \int_0^1 |\dot{V}_m| dt = \sqrt{\left[1 + \frac{(2\pi \cdot N_0 \cdot P^{m} \cdot A_m)^2}{2}\right] \cdot \int_0^1 |\dot{V}_{m-1}| dt \quad (\text{as } P \to \infty)$ • $l_m = \sqrt{\left[1 + \frac{(2\pi \cdot N_0 \cdot p^{m} \cdot A_m)^2}{2}\right] \cdot l_{m-1}}$ ≻ New Idea: Approach Hevea Project program revealed selfsimilarity, strongly suggested a fractal ➢ Initial Idea: structure Gain Distribution & Amplitude Derivation Wrap a high frequency sine wave Wanted to imitate their solution around a circle Instead of wrinkling just along a • Consider this product of L terms, with $\beta(L)$ chosen to equate the result to the total gain (k): "single" (azimuth) direction, inject ✤ Keep the frequency the same but adjust amplitude until desired curve curves **normal** to the previous ones. Matching the ter arc length is achieved LAS. J. AS.L. Unfortunately, the first derivative $l_{m-1} = \sqrt{ \left[\begin{array}{cc} 1 & 2 \\ \end{array} \right] - \sqrt{ \left(\begin{array}{cc} 1 & m^q \end{array} \right) }$ ·╆╼╺┥╸╸∯╾┥╾╼┾╼╺┽╾╼┾╼╺┥╸╺╬╸╸╡╾╍┾╼╇ fails to converge as the frequency • We can now determine the amplitudes using: $A_m = \frac{1}{2\pi \cdot N_0 \cdot P^m} \sqrt{\frac{2\beta(L)}{m^q}}$ approaches infinity Achieved a curve of C⁰ but not C¹ $\succ \text{ Now, } \lim_{L \to \infty} \left\{ \prod_{m=1}^{L} \sqrt{\left(1 + \frac{\beta(L)}{m^q}\right)} \right\} \text{ converges iff } \lim_{L \to \infty} \left\{ \sum_{m=1}^{L} \frac{\beta(L)}{2m^q} \right\} = \lim_{L \to \infty} \left\{ \beta(L) \sum_{m=1}^{L} \frac{1}{2m^q} \right\}$ converges - My ▶ To achieve convergence to unit circle, we need ALL $A_m \to 0$ and thus $\beta(L) \to 0$ as $L \to \infty$. - C > For faster convergence (which is desired), we want a larger q. > But if q > 1, $\sum_{m=1}^{\infty} (m^{-q}/2)$ converges and is finite, meaning $\beta(L) \neq 0$ since we need k > 1. Sirring provide



$$\sqrt{\left(1 + \frac{\beta(L)}{1^{q}}\right)} \sqrt{\left(1 + \frac{\beta(L)}{2^{q}}\right)} \dots \sqrt{\left(1 + \frac{\beta(L)}{L^{q}}\right)} = k$$

rms with the earlier length gain relation, we have:
$$\frac{l_{m}}{l_{m}} = \sqrt{\left[1 + \frac{(2\pi \cdot N_{0} \cdot P^{m} \cdot A_{m})^{2}}{2}\right]} = \sqrt{\left(1 + \frac{\beta(L)}{m^{q}}\right)}$$

Thus, we set q = 1 so that $\sum_{m=1}^{\infty} (m^{-q}/2)$ "barely" diverges allowing for $\beta(L)$ and $A_m \to 0$.

Draaft Darivativa Dranartiaa
Proof: Derivative Properties > Proof of C^1 : • Recall: $\dot{V}_m = \dot{V}_{m-1} + i \cdot A_m \cdot 2\pi \cdot N_0 \cdot P^m \cdot \dot{V}_{m-1} \cdot \cos(2\pi \cdot N_0 \cdot P^m \cdot t)$
 Then V_m ≤ V_{m-1} · √[1 + (2πN₀P^mA_m)²] ≤ V_o · ∏[∞]_{m=1}√[1 + (2πN₀P^mA_m)²] Note that we chose ∏[∞]_{m=1}√[1 + (2π·N₀·P^m·A_m)²/2] = k (meaning that it converges) But that implies ∏[∞]_{m=1}√[1 + (2π · N₀ · P^m · A_m)²] also converges
 ⇒ V_m converges uniformly, and uniform convergence implies continuity, and thus C¹ Note that the 2nd derivative is proportional to 2π ⋅ N₀ ⋅ P^m ⋅ m^{-1/2}. So, the acceleration is not well defined as m → ∞, and thus the Gauss Curvature is also not well defined.
 Proof of Tangent Injective: Minimum of V _m occurs when cos(2π ⋅ N₀ ⋅ P^m ⋅ t) = 0 V _{min} = V ₁ > 0 Since V _{min} > 0, the first derivative map is of full rank and therefore injective
8
Proof: Convergence to Unit Circle
Recall that: V _m = V _{m-1} + i · V _{m-1} · A _m · sin(2π · N ₀ · P ^m · t) The minimum V _m occurs when sin(2π · N ₀ · P ^m · t) = 0. Therefore, the
 minimum V_m is just V₁ . ▶ Note: From previous slides, we have already proved that the upper bound of V_m = V _{max} exists
Maximum V_m occurs when $\sin(2\pi \cdot N_0 \cdot P^m \cdot t) = 1$. Thus, we have $ V_m \le V_1 + \dot{V} _{max} \sum_{1}^{\infty} A_m$
$= V_1 + \dot{V} _{max}\sqrt{\beta(L)} \cdot \sum_{m=1}^{\infty} \frac{1}{2\pi \cdot N_0 \cdot P^m} \sqrt{\frac{2}{m}}$ & But, $\sqrt{\beta(L)} \to 0$ as $L \to \infty$
 ▶ But, √p(L) → 0 as L → ∞ Also, P >1 and 1/(2π·N₀·p^m) √2/m < 0 (1/(p^m)). Summation must then converge. ▶ Therefore, we then have V_m ≤ V₁ and V_m ≥ V₁
> Therefore, $ V_m = V_1 $
9
Proof: Isometric (Pt. 1/2)
 Proof: Isometric (Pt. 1/2) Want to show the length of any segment along the line is equal to the arc length of the corresponding portion of the sinusoidal fractal curve ∫^{T₀+ε}_{T₀} V_∞ dt =
• Want to show the length of any segment along the line is equal to the arc length of the corresponding portion of the sinusoidal fractal curve
 Want to show the length of any segment along the line is equal to the arc length of the corresponding portion of the sinusoidal fractal curve ∫^{T₀+ε}_{T₀} V_∞ dt = lim_{L→∞} ∫^{T₀+ε}_{T₀} V₁ · l[⊥]_{m=1} √1 + ¹/₂ · (A_m · 2π · N₀ · P^m)² · [1 + cos(4π · N₀ · P^m · t)] dt Note that V₁ = 2π and (A_m·2π·N₀·P^m)²/₂ = β(L)/m. And choose an H such that 4π · N₀ · P^H ≫ ¹/_ε.
 Want to show the length of any segment along the line is equal to the arc length of the corresponding portion of the sinusoidal fractal curve ∫^{T₀+ε}_{T₀} V_∞ dt = lim ∫^{T₀+ε}_{T₀} V₁ · ∏^L_{m=1} √1 + ¹/₂ · (A_m · 2π · N₀ · P^m)² · [1 + cos(4π · N₀ · P^m · t)] dt Note that V₁ = 2π and (A_m·2π·N₀·P^m)²/₂ = β(L)/m. And choose an H such that 4π · N₀ · P^H ≫ ¹/_ε. ¹/_{2π} · ∫^{T₀+ε}_{T₀} V_∞ dt = lim ∫^{T₀+ε}_{T₀} V_∞ dt = lim ∫^{T₀+ε}_{T₀} ∏^{H_{m=1} √1 + ^{β(L)}/m · [1 + cos(4π · N₀ · P^m · t)] · ∏^{L_{m=H+1} √1 + ^{β(L)}/m · [1 + cos(4π · N₀ · P^m · t)]dt}}
• Want to show the length of any segment along the line is equal to the arc length of the corresponding portion of the sinusoidal fractal curve • $\int_{T_0}^{T_0+\varepsilon} \dot{V}_{\omega} dt = \lim_{L \to \infty} \int_{T_0}^{T_0+\varepsilon} \dot{V}_1 \cdot \prod_{m=1}^L \sqrt{1 + \frac{1}{2}} \cdot (A_m \cdot 2\pi \cdot N_0 \cdot P^m)^2 \cdot [1 + \cos(4\pi \cdot N_0 \cdot P^m \cdot t)]} dt$ • Note that $ \dot{V}_1 = 2\pi$ and $\frac{(A_m \cdot 2\pi \cdot N_0 \cdot P^m)^2}{2} = \frac{\beta(L)}{m}$. And choose an H such that $4\pi \cdot N_0 \cdot P^H \gg \frac{1}{\varepsilon}$. • $\frac{1}{2\pi} \cdot \int_{T_0}^{T_0+\varepsilon} \dot{V}_{\omega} dt = \lim_{L \to \infty} \int_{T_0}^{T_0+\varepsilon} \prod_{m=1}^H \sqrt{1 + \frac{\beta(L)}{m}} \cdot [1 + \cos(4\pi \cdot N_0 \cdot P^m \cdot t)]} dt$ • Note that $\prod_{m=1}^H \sqrt{\left(1 + \frac{\beta(L)}{m}\right) \cdot \left[1 + \cos(4\pi \cdot N_0 \cdot P^m \cdot t)\right]}$ is of order $O\{\beta(L) \cdot [1 + \cos(4\pi \cdot N_0 \cdot P^m \cdot t)] \cdot [ln(H) + \gamma - 1] + 1\}$
 Want to show the length of any segment along the line is equal to the arc length of the corresponding portion of the sinusoidal fractal curve ∫^{T0+ε}_{T0} V_∞ dt = lim ∫^{T0+ε}_{T0} V₁ · l^L_{m=1} √(1 + ¹/₂ · (A_m · 2π · N₀ · P^m)² · [1 + cos(4π · N₀ · P^m · t)] dt Note that V₁ = 2π and (A_m·2π·N₀·P^m)²/₂ = β(L)/m. And choose an H such that 4π · N₀ · P^H ≫ ¹/_ε. ¹/_{2π} · ∫^{T0+ε}_{T0} V_∞ dt = lim ∫^{T0+ε}_{T0} V_∞ dt = (1 + cos(4π · N₀ · P^m · t)] · Π^L_{m=H+1}√(1 + ^{β(L)}/_m · [1 + cos(4π · N₀ · P^m · t)]dt Note that [I^H_{m=1}√(1 + ^{β(L)}/_m) · [1 + cos(4π · N₀ · P^m · t)] is of order
• Want to show the length of any segment along the line is equal to the arc length of the corresponding portion of the sinusoidal fractal curve • $\int_{T_0}^{T_0+\varepsilon} \dot{V}_{\omega} dt = \lim_{L \to \infty} \int_{T_0}^{T_0+\varepsilon} \dot{V}_1 \cdot \prod_{m=1}^L \sqrt{1 + \frac{1}{2}} \cdot (A_m \cdot 2\pi \cdot N_0 \cdot P^m)^2 \cdot [1 + \cos(4\pi \cdot N_0 \cdot P^m \cdot t)]} dt$ • Note that $ \dot{V}_1 = 2\pi$ and $\frac{(A_m \cdot 2\pi \cdot N_0 \cdot P^m)^2}{2} = \frac{\beta(L)}{m}$. And choose an H such that $4\pi \cdot N_0 \cdot P^H \gg \frac{1}{\varepsilon}$. • $\frac{1}{2\pi} \cdot \int_{T_0}^{T_0+\varepsilon} \dot{V}_{\omega} dt = \lim_{L \to \infty} \int_{T_0}^{T_0+\varepsilon} \prod_{m=1}^H \sqrt{1 + \frac{\beta(L)}{m}} \cdot [1 + \cos(4\pi \cdot N_0 \cdot P^m \cdot t)]} dt$ • Note that $\prod_{m=1}^H \sqrt{\left(1 + \frac{\beta(L)}{m}\right) \cdot \left[1 + \cos(4\pi \cdot N_0 \cdot P^m \cdot t)\right]}$ is of order $O\{\beta(L) \cdot [1 + \cos(4\pi \cdot N_0 \cdot P^m \cdot t)] \cdot [ln(H) + \gamma - 1] + 1\}$
 Want to show the length of any segment along the line is equal to the arc length of the corresponding portion of the sinusoidal fractal curve ∫_{T_0}^{T_0+ε} V₀ dt = lim ∫_{T_0}^{T_0+ε} V₁ · ∫_{m=1}^L √ 1 + ½ · (A_m · 2π · N₀ · P^m)² · [1 + cos(4π · N₀ · P^m · t)] dt Note that V₁ = 2π and (A_m·2π·N₀·P^m)²/2 = β(L)/m. And choose an H such that 4π · N₀ · P^H ≫ ½. ¼_{L→∞} ∫_{T_0}^{T_0+ε} V_∞ dt = lim ∫_{T_0}^{T_0+ε} V_∞ dt = lim ∫_{T_0}^{T_0+ε} M_{m=1} √ 1 + β(L)/m · [1 + cos(4π · N₀ · P^m · t)] · Π_{m=H+1}^L √ 1 + β(L)/m · [1 + cos(4π · N₀ · P^m · t)] dt Note that ∏_{m=1}^H √ (1 + β(L)/m) · [1 + cos(4π · N₀ · P^m · t)] is of order O{β(L) · [1 + cos(4π · N₀ · P^m · t)] · [ln(H) + γ - 1] + 1} As L → ∞, β(L) → 0. Thus, ∏_{m=1}^H √ (1 + β(L)/m) · [1 + cos(4π · N₀ · P^m · t)] → 1
• Want to show the length of any segment along the line is equal to the arc length of the corresponding portion of the sinusoidal fractal curve • $\int_{T_0}^{T_0+\varepsilon} \dot{V}_{\alpha} dt = \lim_{L \to \infty} \int_{T_0}^{T_0+\varepsilon} \dot{V}_1 \cdot \prod_{m=1}^{L} \sqrt{1 + \frac{1}{2} \cdot (A_m \cdot 2\pi \cdot N_0 \cdot P^m)^2 \cdot [1 + \cos(4\pi \cdot N_0 \cdot P^m \cdot t)]} dt$ • Note that $ \dot{V}_1 = 2\pi$ and $\frac{(A_m \cdot 2\pi \cdot N_0 \cdot P^m)^2}{2} = \frac{\beta(L)}{m}$. And choose an H such that $4\pi \cdot N_0 \cdot P^H \gg \frac{1}{\varepsilon}$. • $\frac{1}{2\pi} \cdot \int_{T_0}^{T_0+\varepsilon} \dot{V}_{\infty} dt = \lim_{m=1} \sqrt{1 + \frac{\beta(L)}{m} \cdot [1 + \cos(4\pi \cdot N_0 \cdot P^m \cdot t)]} \cdot \prod_{m=H+1}^{L} \sqrt{1 + \frac{\beta(L)}{m} \cdot [1 + \cos(4\pi \cdot N_0 \cdot P^m \cdot t)]} dt$ • Note that $\prod_{m=1}^{H} \sqrt{\left(1 + \frac{\beta(L)}{m}\right) \cdot [1 + \cos(4\pi \cdot N_0 \cdot P^m \cdot t)]} \text{ is of order} O\{\beta(L) \cdot [1 + \cos(4\pi \cdot N_0 \cdot P^m \cdot t)] \cdot [\ln(H) + \gamma - 1] + 1\}$ • As $L \to \infty$, $\beta(L) \to 0$. Thus, $\prod_{m=1}^{H} \sqrt{\left(1 + \frac{\beta(L)}{m}\right) \cdot [1 + \cos(4\pi \cdot N_0 \cdot P^m \cdot t)]} \to 1$
• Want to show the length of any segment along the line is equal to the arc length of the corresponding portion of the sinusoidal fractal curve • $\int_{T_0}^{T_0+\varepsilon} \dot{V}_{\infty} dt = \int_{L \to \infty}^{T_0+\varepsilon} \dot{V}_1 \cdot \prod_{m=1}^{L} \sqrt{1 + \frac{1}{2}} \cdot (A_m \cdot 2\pi \cdot N_0 \cdot P^m)^2 \cdot [1 + \cos(4\pi \cdot N_0 \cdot P^m \cdot t)]} dt$ • Note that $ \dot{V}_1 = 2\pi$ and $\frac{(A_m \cdot 2\pi \cdot N_0 \cdot P^m)^2}{2} = \frac{\beta(L)}{m}$. And choose an H such that $4\pi \cdot N_0 \cdot P^H \gg \frac{1}{\varepsilon}$. • $\frac{1}{2\pi} \cdot \int_{T_0}^{T_0+\varepsilon} \dot{V}_{\infty} dt = \lim_{L \to \infty} \int_{0}^{T_0+\varepsilon} \prod_{m=1}^{H} \sqrt{1 + \frac{\beta(L)}{m}} \cdot [1 + \cos(4\pi \cdot N_0 \cdot P^m \cdot t)]} dt$ • Note that $\prod_{m=1}^{H} \sqrt{(1 + \frac{\beta(L)}{m})} \cdot [1 + \cos(4\pi \cdot N_0 \cdot P^m \cdot t)]}$ is of order $O(\beta(L) \cdot [1 + \cos(4\pi \cdot N_0 \cdot P^m \cdot t)] \cdot [\ln(H) + \gamma - 1] + 1]$ • As $L \to \infty$, $\beta(L) \to 0$. Thus, $\prod_{m=1}^{H} \sqrt{(1 + \frac{\beta(L)}{m})} \cdot [1 + \cos(4\pi \cdot N_0 \cdot P^m \cdot t)]} \to 1$
• Want to show the length of any segment along the line is equal to the arc length of the corresponding portion of the sinusoidal fractal curve • $\int_{T_0}^{T_0+\varepsilon} \dot{V}_{\alpha} dt = \lim_{L \to \infty} \int_{T_0}^{T_0+\varepsilon} \dot{V}_1 \cdot \prod_{m=1}^{L} \sqrt{1 + \frac{1}{2} \cdot (A_m \cdot 2\pi \cdot N_0 \cdot P^m)^2 \cdot [1 + \cos(4\pi \cdot N_0 \cdot P^m \cdot t)]} dt$ • Note that $ \dot{V}_1 = 2\pi$ and $\frac{(A_m \cdot 2\pi \cdot N_0 \cdot P^m)^2}{2} = \frac{\beta(L)}{m}$. And choose an H such that $4\pi \cdot N_0 \cdot P^H \gg \frac{1}{\varepsilon}$. • $\frac{1}{2\pi} \cdot \int_{T_0}^{T_0+\varepsilon} \dot{V}_{\infty} dt = \lim_{m=1} \sqrt{1 + \frac{\beta(L)}{m} \cdot [1 + \cos(4\pi \cdot N_0 \cdot P^m \cdot t)]} \cdot \prod_{m=H+1}^{L} \sqrt{1 + \frac{\beta(L)}{m} \cdot [1 + \cos(4\pi \cdot N_0 \cdot P^m \cdot t)]} dt$ • Note that $\prod_{m=1}^{H} \sqrt{\left(1 + \frac{\beta(L)}{m}\right) \cdot [1 + \cos(4\pi \cdot N_0 \cdot P^m \cdot t)]} \text{ is of order} O\{\beta(L) \cdot [1 + \cos(4\pi \cdot N_0 \cdot P^m \cdot t)] \cdot [\ln(H) + \gamma - 1] + 1\}$ • As $L \to \infty$, $\beta(L) \to 0$. Thus, $\prod_{m=1}^{H} \sqrt{\left(1 + \frac{\beta(L)}{m}\right) \cdot [1 + \cos(4\pi \cdot N_0 \cdot P^m \cdot t)]} \to 1$
• Want to show the length of any segment along the line is equal to the arc length of the corresponding portion of the sinusoidal fractal curve • $\int_{T_0}^{T_0 * \varepsilon} \dot{V}_u dt = \lim_{H \to \infty} \int_{T_0}^{T_0 + \varepsilon} \ddot{V}_1 \cdot \int_{m=1}^{L} \sqrt{1 + \frac{1}{2} \cdot (A_m \cdot 2\pi \cdot N_0 \cdot P^m)^2 \cdot [1 + \cos(4\pi \cdot N_0 \cdot P^m \cdot t)]} dt$ • Note that $ \dot{V}_1 = 2\pi$ and $\frac{(A_m \cdot 2\pi \cdot N_0 \cdot P^m)^2}{2} = \frac{\beta(L)}{m}$. And choose an H such that $4\pi \cdot N_0 \cdot P^H \gg \frac{1}{\varepsilon}$. • $\frac{1}{2\pi} \cdot \int_{T_0}^{T_0 + \varepsilon} \ddot{V}_w dt = \lim_{H \to \pi^+} \sqrt{1 + \frac{\beta(L)}{m} \cdot [1 + \cos(4\pi \cdot N_0 \cdot P^m \cdot t)]} dt$ • Note that $\prod_{m=1}^{H} \sqrt{1 + \frac{\beta(L)}{m} \cdot [1 + \cos(4\pi \cdot N_0 \cdot P^m \cdot t)]}$ is of order $O(\beta(L) \cdot [1 + \cos(4\pi \cdot N_0 \cdot P^m \cdot t)] \cdot [\ln(H) + \gamma - 1] + 1]$ • As $L \to \infty$, $\beta(L) \to 0$. Thus, $\prod_{m=1}^{H} \sqrt{(1 + \frac{\beta(L)}{m}) \cdot [1 + \cos(4\pi \cdot N_0 \cdot P^m \cdot t)]} \to 1$ • $\frac{1}{2\pi} \cdot \int_{T_0}^{T_0 + \varepsilon} \dot{V}_\infty dt = \lim_{L \to \infty} \int_{T_0}^{T_0 + \varepsilon} \prod_{m=H+1}^{H} \sqrt{1 + \frac{\beta(L)}{m}} \cdot [1 + \cos(4\pi \cdot N_0 \cdot P^m \cdot t)]} dt$ • Chose H to be large enough so that the $\cos(4\pi \cdot N_0 \cdot P^m \cdot t)$ terms will average out to be arbitrarily small upon integration. • Thus, $\frac{1}{2\pi} \cdot \int_{T_0}^{T_0 + \varepsilon} \dot{V}_\infty dt = \varepsilon \cdot \lim_{L \to \infty} \prod_{m=H+1}^{L} \sqrt{1 + \frac{\beta(L)}{m}} =$
• Want to show the length of any segment along the line is equal to the arc length of the corresponding portion of the sinusoidal fractal curve • $\int_{t_0}^{t_0+\varepsilon} \dot{V}_{\omega} dt = \lim_{L \to \infty} \int_{t_0}^{t_0+\varepsilon} \dot{V}_1 \cdot \prod_{m=1}^{L} \sqrt{1 + \frac{1}{2} \cdot (A_m \cdot 2\pi \cdot N_0 \cdot P^m)^2 \cdot [1 + \cos(4\pi \cdot N_0 \cdot P^m \cdot t)]} dt$ • Note that $ \dot{V}_1 = 2\pi$ and $\frac{(A_m \cdot 2\pi \cdot N_0 \cdot P^m)^2}{2} = \frac{\beta(L)}{m}$. And choose an H such that $4\pi \cdot N_0 \cdot P^H \gg \frac{1}{\varepsilon}$. • $\frac{1}{2\pi} \cdot \int_{t_0}^{t_0+\varepsilon} \dot{V}_{\omega} dt = \lim_{\frac{1}{2m} = t_0} \sqrt{1 + \frac{\theta(L)}{m} \cdot [1 + \cos(4\pi \cdot N_0 \cdot P^m \cdot t)]} \cdot \prod_{m=H+1}^{L} \sqrt{1 + \frac{\theta(L)}{m} \cdot [1 + \cos(4\pi \cdot N_0 \cdot P^m \cdot t)] dt}$ • Note that $\prod_{m=1}^{H} \sqrt{\left(1 + \frac{\theta(L)}{m}\right) \cdot \left[1 + \cos(4\pi \cdot N_0 \cdot P^m \cdot t)\right]}$ is of order $O(\beta(L) \cdot [1 + \cos(4\pi \cdot N_0 \cdot P^m \cdot t)] \cdot [\ln(H) + \gamma - 1] + 1$ • As $L \to \infty$, $\beta(L) \to 0$. Thus, $\prod_{m=1}^{H} \sqrt{\left(1 + \frac{\theta(L)}{m}\right) \cdot \left[1 + \cos(4\pi \cdot N_0 \cdot P^m \cdot t)\right]} \to 1$ Proof: Isometric (Pt. 2/2) • $\frac{1}{2\pi} \cdot \int_{t_0}^{t_0+\varepsilon} \dot{V}_{\infty} dt = \lim_{L \to \infty} \int_{t_0}^{t_0+\varepsilon} \prod_{m=H+1}^{L} \sqrt{1 + \frac{\theta(L)}{m}} \cdot \left[1 + \cos(4\pi \cdot N_0 \cdot P^m \cdot t)\right]} dt$ • Chose H to be large enough so that the $\cos(4\pi \cdot N_0 \cdot P^m \cdot t)$ terms will average out to be arbitrarily small upon integration.

Embedding a Flat Torus in Three Dimensional Euclidean Space

2D Proofs

Convergence to Torus & Gradient Existence

3D Proofs

Perturbed Equations / Wrapping Fractal onto Torus:

- $x(\theta,\varphi) = \left[\tilde{R}(\varphi,k_{R}(\theta)) + \tilde{r}(\theta,k_{r}) \cdot \cos(2\pi \cdot \theta)\right] \cdot \cos(2\pi \cdot \varphi)$ $y(\theta,\varphi) = \left[\tilde{R}(\varphi,k_{R}(\theta)) + \tilde{r}(\theta,k_{r}) \cdot \cos(2\pi \cdot \theta)\right] \cdot \sin(2\pi \cdot \varphi)$
- $z(\theta, \varphi) = \tilde{r}(\theta, k_r) \cdot \sin(2\pi \cdot \theta)$
- where: $k_r = \frac{2\pi \cdot (R+r)}{2\pi \cdot r} = \frac{R+r}{r}$ and $k_R(\theta) = \frac{2\pi \cdot (R+r)}{2\pi \cdot [R+\hat{r}(\theta) \cdot \cos(2\pi \cdot \theta)]} = \frac{R+r}{R+\hat{r}(\theta) \cdot \cos(2\pi \cdot \theta)}$
- Notice that $\tilde{R}(\varphi, k_R(\theta))$ and $\tilde{r}(\theta, k_r)$ are sinusoidal fractals, which were constructed to converge to R and r respectively \Rightarrow convergence to torus in amplitude
- First Partial Derivatives:
- $\frac{\partial x}{\partial \varphi} = \frac{\partial (\tilde{R}(\varphi, k_R(\theta)) \cdot \cos(2\pi \cdot \varphi))}{\partial \varphi} + \frac{\partial (\tilde{r}(\theta, k_r) \cdot \cos(2\pi \cdot \theta))}{\partial \varphi} \cdot \cos(2\pi \cdot \varphi)$
- $\frac{\partial x}{\partial \varphi} = \frac{\partial (\tilde{R}(\varphi, k_{R}(\theta)) \cdot \cos(2\pi \cdot \varphi))}{\partial \varphi} 2\pi \cdot \tilde{r}(\theta, k_{r}) \cdot \cos(2\pi \cdot \theta) \cdot \sin(2\pi \cdot \varphi)$
- $\frac{\partial y}{\partial \theta} = \frac{\partial ((\tilde{R}(\varphi, k_R(\theta)) \cdot \sin(2\pi \cdot \varphi))}{\partial \theta} + \frac{\partial (\tilde{r}(\theta, k_r) \cdot \cos(2\pi \cdot \theta))}{\partial \theta} \cdot \sin(2\pi \cdot \varphi)$
- $\frac{\partial y}{\partial \varphi} = \frac{\partial ((\tilde{R}(\varphi, k_{R}(\theta)) \cdot \sin(2\pi \cdot \varphi))}{\partial \varphi} + 2\pi \cdot \tilde{r}(\theta, k_{r}) \cdot \cos(2\pi \cdot \theta) \cdot \cos(2\pi \cdot \varphi)$
- $\frac{\partial z}{\partial \theta} = \frac{\partial (\tilde{r}(\theta, k_r) \cdot \sin(2\pi \cdot \theta))}{\partial \theta} \text{ and } \frac{\partial z}{\partial \varphi} = 0$
- $\tilde{R}(\varphi, k_R(\theta))$ and $\tilde{r}(\theta, k_r)$ are sinusoidal fractals, which were proved in previous slides to be of class $C^1 \Rightarrow$ gradient exists

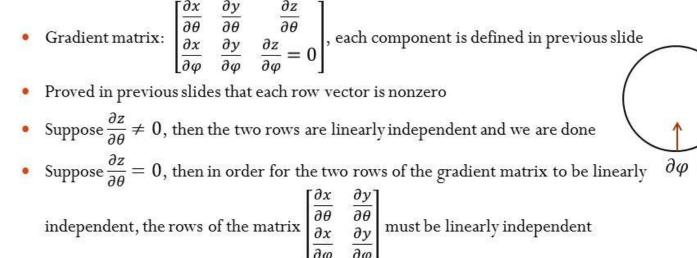
ce to Unit Circle

/2)

2/2)

$$\int_{m=H+1} \sqrt{1 + \frac{\beta(L)}{m}} =$$

Gradient Map One-to-One

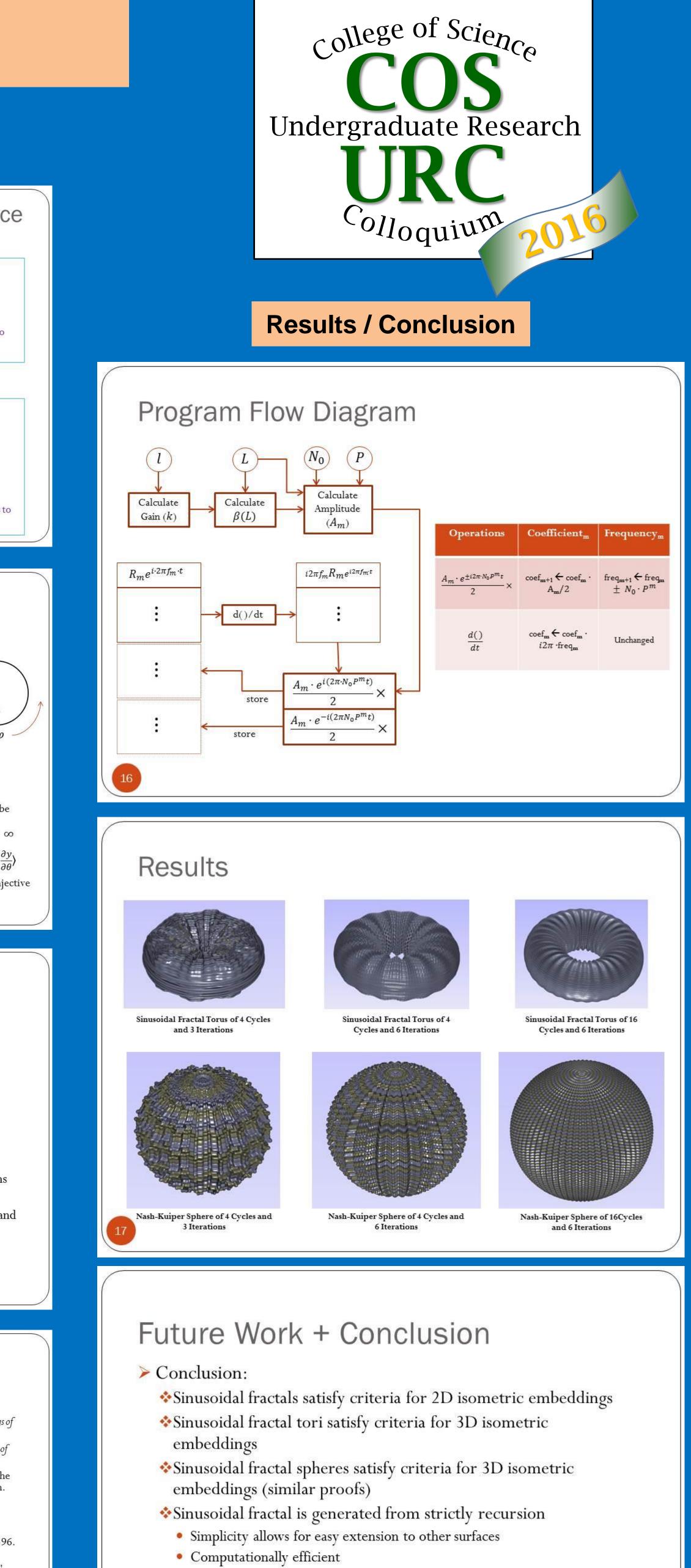


- So, by assuming $\frac{\partial z}{\partial \theta} = 0$, the vector $\langle \frac{\partial x}{\partial \theta}, \frac{\partial y}{\partial \theta} \rangle$ must then point towards the center of the tube
- Suppose $\langle \frac{\partial x}{\partial \varphi}, \frac{\partial y}{\partial \varphi} \rangle$ points in the same direction, then since $\partial \varphi = 0$ and $\partial R \neq 0 \Rightarrow \frac{\partial R}{\partial \theta} = \infty$
- Contradicting derivatives bounded $\Rightarrow \langle \frac{\partial x}{\partial \varphi}, \frac{\partial y}{\partial \varphi} \rangle$ cannot point in the same direction as $\langle \frac{\partial x}{\partial \theta}, \frac{\partial y}{\partial \theta} \rangle$
- Thus, rows of gradient matrix are linearly independent ⇒ gradient map is one-to-one / injective
- **3D** Isometric • Flat torus mapping: • dR can be expressed as a linear combination of d heta and $d\phi$
- Already proved isometry between $d\theta$ and $d\theta'$ and $d\varphi$ and $d\varphi'$ directions
- Also, d heta' and darphi' are perpendicular and so are d heta and darphi
- Then we can construct a unitary rotation matrix which maps $d\theta$ to $d\theta'$ and
- darphi to darphi'• This implies the 3D case is isometric

* Globe Image Retrieved From: Petzold, Charles. Latitude and Longitude. Digital image. PETZOLD BOOK BLOG. N.p., July-Aug. 2007. Web. 22 Mar. 2016.

References

- Borrelli et al., Flat tori in three-dimensional space and convex integration. Proceedings of the National Academy of Sciences PNAS. (05/2012), 109 (19), p. 7218 7223 • Davis, Diana. "Lines in Positive Genus: An Introduction to Flat Surfaces." EMS Series of
- Lecture Notes (2015): 1-50. 10 July 2015. Web.
- Günther, Matthias. Isometric embeddings of Riemannian manifolds. Proceedings of the International Congress of Mathematicians, Vol. I, II (Kyoto, 1990), 1137–1143, Math. Soc. Japan, Tokyo, 1991.
- Kuiper, Nicolaas H. "On C1-isometric Imbeddings. I." Indagationes Mathematicae (Proceedings) 58 (1955): 545-56. Web.
- Nash, John. "C 1 Isometric Imbeddings." The Annals of Mathematics 60.3 (1954): 383-96.
- Verma, Nakul. "Towards an Algorithmic Realization of Nash's Embedding Theorem." CSE (2012): 1-24. Web.
- Gauss, K. F., J. C. Morehead, and A. M. Hiltebeitel. "General Investigations of Curved Surfaces of 1827 and 1825." The Mathematical Gazette 2.35 (1902): 215. Web.



> Future Work:

*Extend sinusoidal fractals to double torus using hyperbolic geometry