Hyperbolic Geometry

Hyperbolic geomeotry was one of the first non-Euclidean geometries discovered, and it's geodesics are perpendicular to the edge of the space. There are many ways to represent hyperbolic space, such as the models of H^2 below:

- Half Plane Model Conformal mapping to the upper complex plane
- Poincare Disk Model Conformal mapping to a unit disk
- Beltrami-Klein Disk Mapping to the unit disk that preserved hyperbolic distance
- Minkowski Hyperboloid Model: embedded on a one-sheet hyperboloid in Minkowski space.

Definition (Half-Space Model)

- 3-dimensional analog of half-plane model, but embedded in R^3 above the horizontal plane.
- Q Geodesics are circular arcs that meet the plane perpendicularly

Derivation of Hyperbolic Geodesics in H^2

Fractional linear transforms of $SL_2(\mathbb{R})$ act as group of isometries of upper-half plane model, so we apply these transforms to unit-speed geodesic starting at i, pointing directly upwards.

Hyperbolic Geodesics in H^3

Lateral translation in half-space does not change geodesic, so, the position of an arrows shot from (x,y,z) in the direction (a,b,c)

 $\begin{aligned} &\Gamma(x,y,z) = \\ &(x+yRe[\gamma(\varphi,t)]\cos\theta, yIm[\gamma(\varphi,t)], z+yRe[\gamma(\varphi,t)]\sin\theta) \end{aligned}$

Where $\varphi = A\cos(b)$ and $\theta = A\tan(c,a)$

3D Visualizations of Thurston Geometries

Taylor Fountain, Aidan Donahue, Jean-Marc Daivau-Williams, Sam Wells

December 4, 2020

I hurston Geometries	
Definition (Thurston's Geometrization Coniecture)	Anal
Any closed 3-Manifold can be decomposed into	• Carte
sufficient elements such that each component has one of	Cove
eight geometries, called Thurston Geometries	covei
Unity Implementation	Side Proj
In the Spring, created a mapper to go from Euclidean	Ford
geometry to Nil, using an archery simulation to visualize	parar
the geodesic.	Redu
 Expanding functionality by implementing half-space 	at <u>P</u>
model	at q
 Original idea: Calculate geodesic at origin in a unit 	
direction (e.g. $[1, 0, 0]$) and rotate in appropriate	
direction then parallel transform to actual position	
of object	
Found that computing the geodesic directly through	
matrices and fractional linear transforms was easier.	
implementing equations explicitly preserving	
hyperbolic unit speed	
Allowed player to switch the geometries at runtime	
and mid flight using number keys	-
• Multiplever functionality partially working wie	• Io m
Initially working via Destand Units Network	ratio
Photon Unity Network	
Half-Space Model in Archery Simulation	Ford Sph
A second s E	Ford Sp
	are param
< Persp	number.
	are define
	unique fa

ed such that the integer ring $\mathcal{O}_{\mathbb{Q}(\sqrt{-D})}$ is a unique factorization domain. Coprime algebraic integers α and β in $\mathbb{Q}(\sqrt{-D})$ determine a **Ford sphere** at $\frac{\alpha}{\beta}$ given by

In general, it can be difficult to find relatively prime α, β pairs, but a 2015 paper by Sam Northshield gives an efficient method to finding them.

logs of 2-space: E^3 , S^3 , and H^3 esian product geometries: $H^2 x \mathbb{R}$, $S^2 x \mathbb{R}$ ering geometries: Nil, Sol, and the universal r of $SL_2(\mathbb{R})$

ect: Ford Circles/Spheres

Circles are a set of non-intersecting circles meterized by \mathbb{Q}

uced $\frac{p}{q}$ gives $C_{p,q} = C\left(\frac{p}{q}, \frac{1}{2q^2}\right)$ – the ford circle

nove to 3D we need to consider complex nals.

eres

heres are a set of non intersecting spheres that neterized by $\mathbb{Q}(\sqrt{-D})$ where D is a Heegner The **Heegner numbers**:

1, 2, 3, 7, 11, 19, 43, 67, 163

$$S_{lpha,eta} = S\left(rac{lpha}{eta},rac{1}{2|eta|^2}
ight)$$

Two algebraic integers $\alpha, \beta \in \mathbb{Q}(\sqrt{-D})$ are coprime if and only $gcd(|lpha|^2, |eta|^2, s, \frac{t}{\sqrt{D}}) = 1, ext{ if } D \equiv 1, 2 \mod 4$ $gcd(|lpha|^2, |eta|^2, s - \frac{t}{\sqrt{D}}, \frac{2t}{\sqrt{D}}) = 1, ext{ if } D \equiv 3 \mod 4$

Gaussian Integer Configuration

Eisenstein Integer Configuration

We would like to thank our professor advisor, Dr. Lukyanenko, and our graduate student mentor, Joseph Frias, for the guidance they provided this semester with our research.

1 Northshield, Sam. "Ford Circles and Spheres." ArXiv:1503.00813 [Math], Mar. 2015. arXiv.org, http://arxiv.org/abs/1503.00813.