Mathematical Exploration of New Ideas Surrounding Capillarity Understanding in Science (M.E.N.I.S.C.U.S.)

INTRODUCTION AND CAPILLARY STATICS

Jurin's Law (1718)

Maximum height is inversely proportional to the radius of the tube.

 $h_{eq} = \frac{2\gamma \cos(\theta)}{\rho g r} \cdot \frac{P_c}{\rho g}$

M.E.N.I.S.C.U.S. Statics Equations (2020)

Capillary pressure in terms of saturation

CLASSICAL RESULTS AND NEW EXPERIMENTS

time (seconds)

George Andrews, Matthew Kearney, Heather Miller, Laura Nicholson, Zachary Richey, and Dr. Javed Siddique Faculty Advisor Dr. Dan Anderson

Mason Experimental Geometry Lab

December 04, 2020

CAPILLARY DYNAMICS

Washburn Equation (1921)

M.E.N.I.S.C.U.S. Dynamics Equations (2020)

- depend on time.
- solution is:

$$w(r,t) = \frac{G - \rho g}{4\mu} (R^2 - r^2) - \frac{2(G - \rho g)R^2}{\mu} \sum_{n=1}^{\infty} \frac{1}{\lambda_n^3 J_1(\lambda_n)} J_0\left(\lambda_n \frac{r}{R}\right) e^{-\lambda_n^2 \frac{\mu}{\rho R^2} t}$$

$$h(t) = \frac{(G - \rho g)R}{3\mu}t + \frac{2\pi\rho(G - \rho g)R^3}{\mu^2}\sum_{n=1}^{\infty}\frac{1}{\lambda_n^5}H_0(\lambda_n)\left(e^{-\lambda_n^2\frac{\mu}{\rho R^2}t} - 1\right)$$

תנ

$$\frac{\partial P}{\partial z} = -\frac{P_c}{h(t)}$$
; the s

FUTURE RESEARCH

- Mixture Theory: How liquids and gases permeate a material
- **Deformable Materials:** How material expansion and deformation affect capillarity
- **More Simulations:** Numerically solve the problem of unsteady flow in a tube, like we did for parallel plates
- **Random Sphere Packings:** A better approximation for porous materials

• Remove the assumption that the velocity is constant over time. • The pressure gradient does not depend on the position coordinates but can

• For a special case with a constant pressure gradient, assume $\frac{\partial F}{\partial z} = -G$; the

• For a more complex case where pressure is a function of time, assume

system is given by:

$$\frac{\partial w}{\partial t} - \frac{1}{\rho} \frac{P_c}{h(t)} - \frac{\mu}{\rho} \frac{\partial}{\partial r} \left(r \frac{\partial w}{\partial r} \right) + g = 0$$
$$\frac{dh}{dt} - \frac{2}{R^2} \int_0^R w(r, t) r dr = 0$$
$$w(R, t) = 0$$
$$w(r, 0) = 0$$
$$h(0) = 0$$

ACKNOWLEDGEMENTS AND REFERENCES

We would like to thank our project mentor, Dr. Anderson. We would also like to thank Dr. Siddique, who joins us from Penn State; Jessica Masterson, our Graduate Research Assistant; and MEGL for supporting our research.

T. Delker, D. Pengra, and P. Wong. "Interface pinning and the dynamics of capillary rise in porous media". Physical Review Letters, 76(16):2902-2905, 1996.

M. Lago and M. Araujo. "Capillary Rise in Porous Media". Journal of Colloid and Interface Science, 234(1):35-43, Feb. 2001.

J. I. Siddique, D. M. Anderson, and A. Bondarev. "Capillary rise of a liquid into a deformable porous material". *Physics of Fluids*, 21(1):013106, 2009.

E. Washburn. "The dynamics of capillary flow". *Physical Review*, 17(3): 273-283, 1921.